

APS April Meeting
Denver, CO
16 April 2019

Jan L. Chaloupka
Department of Physics & Astronomy
University of Northern Colorado

atomic unit of intensity

chirped pulse amplification

October-December 1985

Laboratory for Laser Energetics
College of Engineering and Applied Science
University of Rochester
250 East River Road
Rochester, New York 14623-1299

rescattering

HHG with two-color, counter-rotating fields

photonics

ARTICLES

PUBLISHED ONLINE: 8 DECEMBER 2014 | DOI: 10.1038/NPHOTON.2014.293

Generation of bright phase-matched circularlypolarized extreme ultraviolet high harmonics

Ofer Kfir^{1*}, Patrik Grychtol², Emrah Turgut², Ronny Knut^{2,3}, Dmitriy Zusin², Dimitar Popmintchev², Tenio Popmintchev², Hans Nembach^{2,3}, Justin M. Shaw³, Avner Fleischer^{1,4}, Henry Kapteyn²,

Margaret Murnane² and Oren Cohen^{1*}

RAPID COMMUNICATIONS

PHYSICAL REVIEW A

VOLUME 51, NUMBER 5

MAY 1995

Polarization-dependent high-order two-color mixing

H. Eichmann, A. Egbert, S. Nolte, C. Momma, and B. Wellegehausen Institut für Quantenoptik, Universität Hannover, Welfengarten 1, 30167 Hannover, Germany

W. Becker,* S. Long, and J. K. McIver

Center for Advanced Studies, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131
(Received 1 December 1994)

High-order frequency mixing experiments using the radiation of a high-power Ti:sapphire laser and its second harmonic are described and discussed. Linearly and circularly polarized light fields with comparable intensities have been used. For the theoretical description a three-dimensional quantum-mechanical calculation with a δ -function potential has been applied, showing quite good agreement with the experiments.

simple returning trajectory

classical ensemble approach

helium ionization yield curves

 10^5 runs/point 1.4×10^6 runs/curve 9.8×10^6 runs total

Chaloupka & Hickstein, *Physical Review Letters* (April 2016)

high-performance computing cluster

Intel Xeon ES-2620 v3 2.4 GHz

> 15 NODES 12 CORES/NODE

GFORTRAN

MESSAGE PASSING INTERFACE (MPI)

double ionization yield

 2×10^5 runs/point 10^7 runs/ratio 1.2×10^9 runs total

double ionization (co-rotating fields) Double Ionization Events / 8 100Å 120Å

20Å

10¹⁶ W/cm² 1.9×10⁹ runs total

