
## Math Challenge Problem

for late September 2011

## Tiling with Tetris T's



Suppose you have a large collection of identical "T" shaped Tetris tiles, like the one above. Each tile is made up of four  $1 \times 1$  squares. The challenge: which  $m \times n$  rectangles can you tile using these T's, without overlaps, overhangs, gaps, or cutting tiles. For example, a  $2 \times 5$  rectangle is impossible:



- 1. Can you create a  $10 \times 10$  square out of the tiles?
- 2. For which n can you create an  $n \times n$  square out of the tiles? For which n is it impossible?
- 3. For which m and n can you create an  $m \times n$  rectangle out of the tiles? For which m and n is it impossible?

Submit solutions to Ross 2239 or to oscar.levin@unco.edu by Friday, September 30th.

The best solution will be posted on the Math Challenge Problem webpage.

Look for a new Challenge Problem in early October.