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Rear-fanged snake venoms: an untapped source of novel compounds
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Abstract

Animal venoms represent a diverse source of potentially valuable therapeutic compounds due
to the high specificity and the potent biological activity of many toxins. Snake venom toxins,
particularly disintegrins and proteases from viper venoms, have yielded therapeutics with
anti-cancer and hemostatic dysfunction activities. However, venoms from rear-fanged
‘‘colubrid’’ snakes have rarely been analyzed from the perspective of potential lead compound
development. Here, we discuss recent progress in the analysis of these venoms, focusing on
several studies of specific venom components as well as transcriptomic and proteomic surveys.
Currently available –omic technologies largely circumvent the problematic low venom yields
of most rear-fanged snakes, and because their basic biology is often very different from the
well-studied front-fanged snakes, there is great potential for novel compound discovery in their
venoms.
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Introduction

Like all venomous snakes, the venoms of rear-fanged

‘‘colubrid’’ snakes contain a variety of proteins and peptides

that exhibit potent biological functions (Fry et al., 2003a,

2008; Hill & Mackessy, 2000; Mackessy, 2002; Weldon &

Mackessy, 2010). However, to date, the amount of published

work investigating rear-fanged snake venoms remain rela-

tively low compared to the extensive literature examining the

composition and biochemical complexity of venoms from

front-fanged elapid and viperid snakes. The reason for this

is two-fold. Although at least five genera (Dispholidus,

Philodryas, Rhabdophis, Tachymenis and Thelotornis) con-

tain species responsible for serious (including fatal) human

envenomations (Weinstein et al., 2011), rear-fanged colubrids

are often considered as non-threatening to humans, and

accordingly, research into venom composition and complexity

has been relatively under-studied. Second, due to the low-

pressure venom delivery system and difficulties associated

with venom extractions (see below), low amounts of starting

materials are often considered as a significant constraint to

colubrid venom research (Mackessy, 2002). However,

advancements in laboratory techniques, as well as venom

extraction methods, have resulted in an increased understand-

ing of rear-fanged snake venoms, and these ‘‘weak’’ venoms

may demonstrate a great deal of biological complexity.

Venom characteristics similar to those of front-fanged snakes

have been documented for several species [refer Mackessy

(2002, 2010a,b) for reviews], but due to the tremendous

taxonomic diversity of the ‘‘rear-fanged snakes’’, encompass-

ing several families, subfamilies and hundreds of species,

a variety of different ‘‘venom compositional strategies’’ are

observed, leading to a high diversity of venom proteomes.

Further, rear-fanged colubrids represent very different evolu-

tionary lineages from elapids and vipers (Pyron et al., 2013;

Vidal, 2002), providing the potential for discovery of novel

proteins and protein families that may represent excellent

lead compounds for drug design or development. Rear-fanged

snakes are exceptionally diverse, and representative species

are found on all continents except Antarctica (Figures 1–4).

Expanded research on rear-fanged snake venoms will also

provide a better understanding of the broader evolutionary

trends among venomous snakes, as well as significant insights

into potential therapeutic agents that may be derived from

compounds isolated from rear-fanged snake venoms.

The Duvernoy’s venom gland

At least one-third of the 2300+ species of non-front-fanged

advanced snakes (‘‘colubrids’’) produce a specialized venom

(Mackessy, 2002; Pyron et al., 2013; Vidal et al., 2007).

The Duvernoy’s gland of rear-fanged snakes (Figure 5A) is

homologous to the venom glands of the front-fanged elapid

and viperid snakes (Kochva, 1965; Savitzky, 1980). Unlike

the venom glands of front-fanged snakes, which are typically

large with a basal lumen capable of storing significant

quantities of secreted venom (e.g. Mackessy, 1991), the
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Figure 1. Representative African rear-fanged
snakes. (A) Rhamphiophis oxyrhynchus
(Rufous Beaked Snake – Tanzania).
(B) Lioheterodon madagascariensis
(Madagascan Hognosed Snake).
(C) Psammophis sibilans (Striped Sand
Snake – North Africa). (D) Thelotornis
kirtlandii (Twig Snake – Uganda).
Photographs copyright S.P. Mackessy.

Figure 2. Representative Asian rear-fanged
snakes. (A) Ahaetulla prasina (Asian Vine
Snake – Sumatra). (B) Dendrelaphis formo-
sus (Elegant Bronzeback Snake – Malaysia).
(C) Boiga dendrophila (Mangrove Catsnake –
Java). (D) Boiga cynodon (Dog-toothed
Catsnake – Malaysia). (E) Boiga irregularis
(Brown Treesnake – Guam). (F) Enhydris
plumbea (Rice Paddy Snake – Malaysia).
Photographs copyright S.P. Mackessy.
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Duvernoy’s venom gland lacks a large basal lumen. Most

rear-fanged venomous colubrids also lack hollow fangs, and

instead, posterior maxillary teeth, often enlarged and/or

grooved (Figure 5B; Mackessy, 2010a; Young & Kardong,

1996), participate in venom introduction into tissues

(Kardong & Lavin-Murcio, 1993; Vonk et al., 2008). In

general, the Duvernoy’s gland is considered a low-pressure

system (Kardong & Lavin-Murcio, 1993), but a recent

analysis has suggested that grooved enlarged rear maxillary

teeth (as seen in many Boiga species; Figure 5B) can deliver

venom effectively and fairly rapidly into wounds (Young

et al., 2011). Although it has been suggested that the term

Duvernoy’s gland should be abandoned, with the term venom

gland used for any toxin-secreting buccal glands (Fry et al.,

2003a), rear-fanged snakes possess distinctly different

venom delivery systems, and we recommend using the term

Duvernoy’s venom gland. This retains the historical compo-

nent of the name (named after G. L. Duvernoy; Taub, 1966)

and acknowledges the distinct biomechanical features of

the envenomation systems of ‘‘colubrids’’, but recognizes the

clear embryonic, evolutionary and biochemical homology

with front-fanged snake venom glands.

Very few rear-fanged snake venoms are commercially

available, in part because of low yields, and the biological and

pharmacological activities of these venoms are still poorly

known (cf. Mackessy, 2002). Larger species, such as

Boiga irregularis, produce moderate yields which are amen-

able to standard chromatographic fractionation and analyses;

single yields of up to 18.5 mg (90% protein content) have been

recorded (Mackessy et al., 2006). Smaller species, such as

Alsophis portoricensis, yielded proportionally lower amounts,

with a dry venom mass averaging 5.9 mg and approximately

89% protein content (Weldon & Mackessy, 2010); even usable

amounts of venom can be obtained from the smallest species,

such as Tantilla nigriceps (body mass �5 g; Hill & Mackessy,

2000). We routinely use ketamine anesthesia followed by

injection with pilocarpine to produce significantly increased

yields (Ching et al., 2012; Hill & Mackessy 1997; Mackessy

et al., 2006). Other anesthetics, such as Zoletile 100 mg,

Tiletamine 50 mg and Zolazepam 50 mg at a dose of 3 mg/kg

(Fry et al., 2003a,b) have also been employed. These methods,

especially the use of pilocarpine, increase venom yields, are

safe for the snake and facilitate handling. Venoms can then

be repeatedly sampled from the same snake over time, which

may be necessary to obtain sufficient amounts from small

species.

When compared to venoms of front-fanged snakes, the

diversity of proteins in the venom proteome of rear-fanged

snakes is generally less complex (Ching et al., 2006, 2012;

Mackessy, 2002; Weldon & Mackessy, 2010). However, as

demonstrated by 1D SDS-PAGE (Figure 6A) and MALDI-

TOF mass spectrometry (Figure 6B), significant variation can

Figure 3. Representative North American
rear-fanged snakes. (A) Heterodon nasicus
(Western Hognosed Snake – Colorado, USA).
(B) Trimorphodon biscutatus lambda
(Sonoran Lyre Snake – Arizona, USA).
(C) Thamnophis elegans vagrans (Wandering
Garter Snake – Colorado, USA).
(D) Diadophis punctatus (Ringnecked Snake
– USA). (E). Gyalopion canum (Desert
Hooknosed Snake – Arizona, USA).
(F) Tantilla nigriceps (Plains Blackheaded
Snake – southwest USA). Photographs
copyright S. P. Mackessy.
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Figure 4. Representative Central and South
American Rear-fanged Snakes. (A) Oxybelus
fulgidus (Green Vine Snake – Suriname). (B).
Thamnodynastes strigatus (Coastal House
Snake – Suriname). (C) Oxybelis aeneus
(Brown Vine Snake – Honduras). (D)
Philodryas baroni (Argentine Racer –
Argentina). (E) Alsophis portoricensis
(Puerto Rican Racer – Caribbean). (F) Sibon
anthracops (Ringed Snail-eating Snake –
Costa Rica). Photographs copyright from
S. P. Mackessy.

Figure 5. (A) The Duvernoy’s venom gland of a rear-fanged snake, the Brown Treesnake Boiga irregularis (family Colubridae), common in parts
of Indonesia and northeastern Australia and introduced to Guam. Note that the gland lies in the same relative position as that in front-fanged snakes,
but unlike viperids, the gland is not surrounded by adductor muscle. Venom delivery occurs via pressure against the skin generated by adductor
muscles, and the gland is pulled taught by the posterior ligament. Scale bar¼ 1 cm. (B) Deeply grooved rear maxillary fangs of the closely related
Mangrove Catsnake (Boiga dendrophila). Scale bars – top: 100 mm; bottom: 500 mm. Reproduced from Mackessy (2010a).
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be exhibited between species. At least eight different

protein families are represented in rear-fanged snake

venoms (Table 1), and most venoms contain metalloproteases

and cysteine-rich secretory proteins (CRiSPs) as dominant

venom components. Similar to front-fanged snakes,

particularly viperid venoms, rear-fanged snake venoms often

contain P-III metalloproteases as well as higher mass

enzymes. In addition, venoms of some species possess

three-finger toxin proteins structurally similar to those

found in elapid venoms. Yet, in both cases, the abundance

Protein Family

Nucleases

PIII Metalloproteases

Serine proteases?

Cys-rich Secretory
Proteins

Phospholipases A2

Three-finger Toxins

(A)

(B)

Figure 6. (A) One-dimensional SDS-PAGE of non-reduced and reduced rear-fanged snake venoms of the Americas. Protein families with masses
typical of bands seen are listed on the right. PpV, Philodryas patagoniensis; PbV, Philodryas baroni; PooV, Philodryas olfersii olfersii; HttV,
Hypsiglena torquata torquata; Tbl, Trimorphodon biscutatus lambda. (B) Mass spectrograms (MALDI-TOF) of the same venoms. Reproduced from
Peichoto et al. (2012).
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and diversity of these compounds in rear-fanged snake

venoms are generally lower. This lower diversity of proteins is

also seen following two dimensional SDS-PAGE (Figures 7A

and B); gels of both adult and neonate Brown Treesnake

(Boiga irregularis) venoms showed approximately 40 protein

spots, whereas typical rattlesnake venoms often display 100+

proteins (including isoforms) classified into numerous protein

families. Western blotting of the same venoms with poly-

clonal antibodies for tigrin (Yamazaki et al., 2002) revealed

a single CRiSP band (Figure 7C).

Toxins to drugs: colubrid venoms in drug discovery

The development of possible therapeutics from toxins is

becoming increasingly emphasized in venom research, and

numerous compounds found in snake venoms have been

utilized as a source for protein drugs and additional novel

drug leads (Fox & Serrano, 2007; Mukherjee et al., 2011;

Parkes et al., 2013; Takacs & Nathan, 2014). Through the

introduction of ‘‘conscripted’’ homologs of homeostatic

regulators, venom components disrupt important physio-

logical processes. The observation that snake venom genes

have orthologs among normal vertebrate genes, rather than

the evolution de novo of toxic components, provided the

logical connection to the development of toxins as drugs.

When appropriately investigated and evaluated, toxins have

vast potential for applications in numerous fields of biomed-

ical research and may provide the molecular scaffold for

developing potential peptide drugs.

Several novel therapeutics marketed for human use have

been successfully designed from animal poisons and venoms,

with several more currently in clinical trials. The first

successful venom-based drug, captopril, which is currently

on the market as an anti-hypertensive drug, was designed

from the structure of a bradykinin-potentiating peptide from

the venom of Bothrops jararaca. Since the development of

captopril in 1975, numerous compounds have been developed

from the often highly conserved and stable molecular

scaffolds of venom proteins. Tirofiban (aggrastat), an anti-

platelet drug, and integrilin (eptifibatide), used to treat acute

coronary ischemic disease, were both designed based on

the structure of two viperid venom disintegrins, echistatin

(Gan et al., 1988), and barbourin (Scarborough et al., 1993),

respectively. Venoms from rear-fanged snakes also have

the potential to contain compounds that could be used as

pharmacological investigational tools and provide significant

leads in drug design or development.

Drugs targeting coagulopathies

Snake venoms contain a vast array of pro- and anti-coagulants

that exhibit potent interactions with the hemostatic system,

leading researchers to examine these compounds for potential

therapeutic use. Anti-coagulants in snake venoms include

enzymatic proteins such as metalloproteinases, serine pro-

teinases and phospholipase A2 enzymes. Further, some non-

enzymatic proteins such as C-type lectins and three-finger

toxins have also demonstrated anti-coagulant functions

Figure 7. (A, B) Two-dimensional SDS-
PAGE of Brown Treesnake (Boiga irregu-
laris) venoms. Approximately 40 protein
spots are visible (Coomassie blue), less than
half the number typically observed with
rattlesnake venoms. Three-finger toxins,
abundant in this venom, are boxed; both
acidic and basic toxins are observed in both
neonate (A) and adult (B) snake venoms. (C)
Western blot demonstration of a 25 kDa
cysteine-rich secretory protein (CRiSP) in
neonate (left) and adult snake venoms.
Reproduced from Mackessy et al. (2006).
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(Kini, 2006; Sajevic et al., 2011). Serine proteinases are

abundant enzymes in numerous snake venoms, and certain

classes of these enzymes, the thrombin-like enzymes (TLEs),

demonstrate functional similarities to thrombin (Mackessy,

2010b). TLEs often target the plasma glycoprotein fibrinogen

that is normally cleaved specifically by thrombin, releasing

fibrinopeptides A and B and leading to fibrin polymerization

and stabilization by factor XIIIa and the formation of

insoluble clots (Tanaka et al., 2009). However, following

viperid envenomations, a common sequelae is hypofibrino-

genemia, and the loss of this critical clotting factor leads

to uncontrolled and often severe hemorrhage and bleeding.

A TLE isolated from the venom of Calloselasma

(Agkistrodon) rhodostoma, ancrod (Au et al., 1993), showed

promise for treating acute ischemic stroke by cleaving

fibrinogen A(a), depleting competent fibrinogen and further

inhibiting activation of factor XIII or any other coagulation

components (Sherman, 2002). Initial results with ancrod

(drug name viprinex) were promising; however, in late 2008,

this compound failed phase III clinical trials, and is no

longer being developed as a drug for human use in strokes.

Further, the company developing viprinex (Neurobiological

Technologies) filed for bankruptcy and ceased to exist shortly

thereafter, a potent reminder of the labile nature of drug

development.

Serine proteinase activity has been detected in several rear-

fanged venoms (Assakura et al., 1994; Ching et al., 2006,

2012; Hill & Mackessy, 2000; Weldon & Mackessy, 2010),

but activity-based assays, in addition to transcriptomic data,

indicate that these enzymes are in relatively low abundance

(51% in Thamnodynastes strigatus, �2.6% in Philodryas

olfersii; Ching et al., 2006, 2012). Venoms from P. o. olfersii,

Trimorphodon biscutatus lambda, P. patagoniensis, P. baroni

and A. portoricencis all exhibited low serine proteinase

activity toward thrombin-like paranitroaniline-derived peptide

substrates. The most potent serine proteinase activity has been

seen in P. olfersii venom (Peichoto et al., 2012), likely due

to the serine proteinase PoFib S (Assakura et al., 1994). This

36 kDa, acidic (pI 4.5) proteinase hydrolyzed both the A(a)

and B(b)-chains of fibrinogen and also exhibits fibrinolytic

and moderate hemorrhagic activities. It further hydrolyzed

only the Arg-Gly(22–23) peptide bond in oxidized insulin

B-chain. Ethylenediaminetetraacetic acid (EDTA) and 1,10-

phenanthroline, both metalloproteinase inhibitors, did not

prevent PoFib S activity, but dithiothreitol (DTT) signifi-

cantly inhibited the activity of this enzyme. Serine proteinase

assays of rear-fanged snake venoms show higher activity

towards paranitroaniline-coupled peptide substrates for

thrombin-like serine proteases (TosylGlyProArg-pNA),

whereas serine proteinase activity in rattlesnake venoms

exhibits different substrate preferences, with the highest

activity typically towards BzPheValArg-pNA substrate

(Mackessy, 1993, 2008; Peichoto et al., 2012; Weldon &

Mackessy, 2010). Prothrombin activators have been reported

from Dispholidus typus venom long ago, but these remain

poorly characterized (Hiestand & Hiestand, 1979; Mackessy

2002). This prothrombin activator may be the same protein as

that detected in an early proteomic analysis of Dispholidus

venom, which identified a 65 kD metalloprotease in the

venom (Kamiguti et al., 2000). Many other venoms from

rear-fanged snakes do not appear to exhibit thrombin-like

properties (Hill & Mackessy, 2000).

Fibrin(ogen)olytic metalloproteinases may also be attract-

ive candidates for potential thrombolytic drugs. Under normal

physiological conditions, the serine proteinase plasmin is

responsible for the degradation of fibrin clots, and therefore

the disruption of clot formation may be a useful therapeutic

option for thromboses and other clotting disorders. To date,

the most promising fibrin(ogen)olytic drug from snake

venom was derived from the 23 kDa zinc metalloproteinase,

fibrolase. Isolated from Agkistrodon contortrix contortrix

venom (Bajwa et al., 1982; Guan et al., 1991), fibrolase

rapidly cleaves the A(a)-chain and at a slower rate the B

(b)-chain of fibrinogen, and further exhibits similar activity

towards fibrin, by rapidly cleaving the a-chain followed

by a slower cleaving of the b-chain. Amgen developed

alfimeprase, a recombinant form of fibrolase by truncating

the first two amino acid residues and replacing the third

residue, arginine, with a serine. Phase I and II clinical

trials were promising; however, in 2008, alfimeprase did

not meet expectations in Phase III trials, and the develop-

ment of the compound was discontinued (Markland &

Swenson, 2010).

Transcriptomic and proteomic analyses indicate that snake

venom metalloproteinases (SVMPs) are one of the most

abundant enzymes found in rear-fanged venoms (Ching et al.,

2006, 2012; Peichoto et al., 2012; Weldon & Mackessy,

2010). Further, many purified SVMPs have direct fibrin

(ogen)olytic activity, by cleaving either the A(a) or B(b)-

chains of fibrinogen and cleaving fibrin (Peichoto et al.,

2012). It also appears that most fibrin(ogen)olytic SVMPs

hydrolyze the A(a) chain at cleavage sites different from the

serine protease plasmin (Lu et al., 2005a). Although signifi-

cant hemorrhagic activity is shown by most SVMPs, at least

three (PoFibC1, C2, and C3) from P. olfersii venom exhibit

fibrin(ogen)olytic proteolysis without hemorrhagic activity

in mice at doses of 6 mg protein (Assakura et al., 1994).

After 5 min incubation, PofibC1, a 47 kDa acidic (pI 6.2)

SVMP, exhibited partial hydrolysis of A(a)-chain of fibrino-

gen, whereas proteolysis of fibrinogen by PofibC2 (47 kDa,

pI 6.2) and a fourth hemorrhagic metalloproteinase PoFibH

(58 kDa; pI 4.6) resulted in rapid degradation of the A(a)-

chain after 30 s. These SVMPs showed no effect towards

the B(b)-chain after 5 min incubation. Also from P. olfersii

venom, the basic metalloproteinase PofibC3 (45 kDa; pI 8.5)

rapidly degraded A(a)-chain within 30 s, and within 3 min it

produced partial degradation of the B(b)-chain. In addition,

all five enzymes isolated from P. ofersii venom (PoFibC1, C2,

C3, H and the serine proteinase PoFib S mentioned above)

digest the a-polymer and a-chains of fibrin, while the b and

gamma chains are not affected (Assakura et al., 1994).

Similar to PoFibH, patagonfibrase, a 53.2 kDa (pI 5.8)

SVMP from Philodryas patagoniensis venom, degraded the A

(a)-chain of fibrinogen, classifying it as a a-fibrinogenase,

and clots were not produced when patagonfibrase was

incubated with plasma or fibrinogen. This enzyme appears

to degrade fibrinogen, yet does not appear to produce

fibrinopeptides A or B, hydrolytic steps which are necessary

for fibrin polymerization. Patagonfibrase also caused pro-

longed clotting of human citrated plasma when incubated

8 A. J. Saviola et al. Toxin Rev, Early Online: 1–17
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with thrombin. The caseinolytic activity of patagonfibrase

drastically increased in the presence of Ca2+, whereas Zn2+,

cysteine, dithiothreitol and Na2EDTA inhibited almost

all activity (Figure 8A) (Peichoto et al., 2007). This

SVMP caused hemorrhagic myonecrosis and edema when

injected into mouse gastrocnemius muscle (Figure 8B)

and hind paws (Figure 8C), respectively (Peichoto et al.,

2007, 2011b).

Due to significant SVMP concentration, crude venom from

Alsophis portoricencis (family Dipsadidae) showed immedi-

ate hydrolysis of the a subunit of fibrinogen, with slight

degradation of the b subunit only after 60 min incubation

(Weldon & Mackessy, 2010). Alsophinase, a basic, mono-

meric 56 kDa P-III SVMP purified from A. portoricencis

venom was quite sensitive to the metal ion chelator

1,10-phenanthroline (Figure 9A), and it produced rapid

cleavage of the a subunit of fibrinogen when incubated at

a concentration of 1.5 mg/100 ml, indicating that this SVMP is

an a-fibrinogenase. It showed 65% N-terminal sequence

identity with patagonfibrase, and similar to other SVMPs

(including fibrolase), it cleaved the Ala14–Leu15 bond of

oxidized insulin B chain (Figure 9B; Weldon & Mackessy,

2012). However, the Tyr16–Leu17 bond was cleaved at a

much lower rate, and unlike viperid SVMPs, no other

cleavage fragments were observed, even following 24 h

digestion. These results suggest that the specificity of

Figure 8. Activity of patagonfibrase, a PIII metalloprotease isolated from the venom of the dipsadid Philodryas patagoniensis. (A) Effects of
metal ions and inhibitors on protease activity – Ca2+ stimulated activity, while Zn2+, EDTA, DTT and cysteine were strongly inhibitory.
(B) Patagonfibrase increased mouse serum CK levels by 42-fold; this activity was presumed to result from necrotic effects on skeletal muscle.
(C) Intensity of mouse paws edema induced by different doses of patagonfibrase. A and B reproduced from Peichoto et al. (2007) and C from Peichoto
et al. (2011b). *, significantly different from controls (p50.05).

Figure 9. Activity of alsophinase, a PIII metalloprotease purified from
the venom of the dipsadid Alsophis portoricensis. (A) Protease activity
was strongly inhibited by the metal chelator 1,10-phenanthroline.
(B) Alsophinase shows strong cleavage preference for the carboxyl
side peptide bond of A14 (thick arrow) of the oxidized B chain of bovine
insulin; the peptide bond of Y16 (thin arrow) is cleaved at a much lower
frequency, and no other degradation products were observed.
Reproduced from Weldon and Mackessy (2012).
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alsophinase may be greater than observed for many other P-III

SVMPs.

Because metalloproteinases are one of the most abundant

enzymes in the transcriptome and proteome of rear-fanged

snakes, further research may provide additional leads to

possible drug development and therapeutic use of these

enzymes. It should be noted that P-I or P-II classes of SVMPS

precursors have not been identified in transcriptomes of

T. strigatus or P. olfersii or in proteomes of any rear-fanged

snake venom studied to date. However, snake venom matrix

metalloproteinases (svMMPs) have recently been identified in

the transcriptome and proteome of T. strigatus (Ching et al.,

2012), and an apparent 38 kDa matrix-metalloproteinase

was isolated from Rhabdophis tigrinus tigrinus (Komori

et al., 2006), indicating that novel venom proteins are present

in rear-fanged snake venoms, and these may demonstrate

unique biological activities.

Additional snake venom proteins demonstrate potent

interactions with components of the hemostatic system.

C-type lectins target a wide array of coagulation factors,

platelet receptors and other proteins critical to hemostasis

(Lu et al., 2005a). Bothrojaracin, a C-type lectin-like protein

from Bothrops jararaca venom, has been shown to bind to

and exhibit potent inhibitory activity on thrombin (Monteiro

et al., 2001). Botrocetin, also from B. jararaca venom, is

used as an established reagent for examining von Willebrand

factor (vWF)/platelet adhesion and is further used for

detection of abnormalities leading to von Willebrand’s

disease, as well as glycoprotein Ib-vWF-related disorders

such as Bernard–Soulier syndrome (Lu et al., 2005b).

In rear-fanged snake venoms, full length sequences of

C-type lectins have been reported from the venom gland

transcriptome of P. olfersii (Ching et al., 2006) and more

recently two isoforms of C-type lectin-like proteins have

been identified in the proteome of T. strigatus (Ching et al.,

2012), most likely corresponding to the alpha and beta

subunits of this heterodimeric protein. True C-type lectins

have also been found in the transcriptome and proteome

of the rear-fanged snake Cerberus rhynchops (family

Homalopsidae), as well as several new proteins, named

ryncolins, speculated to have platelet aggregating or com-

plement activating activities (OmPraba et al., 2010).

However, no biological activities of any of these proteins

have yet been examined. It is quite probable that other rear-

fanged snake venoms also contain C-type lectin and C-type

lectin-related proteins.

Venom disintegrins, which inhibit platelet aggregation

and have led to the development of two current therapies

(see above), are not found in rear-fanged snake venoms.

However, incubation of the P-III SVMP patagonfibrase

without Ca2+ resulted in an autolytic hydrolysis and release

of the intact disintegrin-like and cysteine-rich domains

(Peichoto et al., 2010). This has also been documented in

Philodryas olfersii, with residue sequence from a 32 kDa

protein matching only the disintegrin-like/cysteine-rich

region (Ching et al., 2006), as well as with alsophinase

from A. portoricencis venom (Weldon & Mackessy, 2012).

Due to differences in disulfide bond structure near the

integrin-binding site, the activity of these P-III disintegrin-

like domains (if any) are likely drastically different from

those of true disintegrins and disintegrin-containing proteins

(Fox & Serrano, 2005).

Cysteine-rich secretory proteins and other toxins

Cyclic nucleotide-gated (CNG) channels are involved in

signal transduction of sensory epithelium of visual and

olfactory neurons (Zimmerman, 1995). In response to stimu-

lus-induced changes within intracellular levels of cyclic

nucleotides, CNG channels generate electrical signals in

response to light or odor (Matulef & Zaggota, 2003;

Zimmerman, 1995). CNG channels are also found in non-

sensory tissue such as brain, kidney and endocrine tissues

(Kaupp & Seifert, 2002); however, their physiological roles

still remain relatively unknown (Biel et al., 1996; Distler

et al., 1994). The isolation of pseudechetoxin, a 24 kDa

CNG blocker and later identified as a cysteine-rich secretory

protein (CRiSP), has led to advances in the understanding

of CNG channels, and has stimulated research into a

relatively new class of venom proteins – the venom CRiSPs

(Brown et al., 1999). CRiSPs are 20–30 kDa, highly

conserved monomeric proteins, broadly distributed in the

venoms of many front and rear-fanged snakes. Although

most CRiSP have unknown functions, the broad distribution

of this protein among venoms suggests a significant bio-

logical role in venom (Mackessy, 2002). A recent prote-

ome study involving Philodryas baroni, P. o. olfersii,

P. patagoniensis, Hypsiglena torquata texana and T. b.

lambda venoms indicated that CRiSPs are a major protein

present in all five venoms (Peichoto et al., 2012; Figures 2

and 3). Sequence data have been reported for several CRiSPs

from venoms of Dispholidus typus, Liophis poecilogyrus,

Philodryas olfersii, Trimorphodon biscutatus (Fry et al.,

2006), Hydrodynastes gigas, Hypsiglena torquata (Hill &

Mackessy, 2000; Mackessy, 2002), Rhabdophis tigrinus

tigrinus (Yamazaki et al., 2002) and P. patagoniensis

(Peichoto et al., 2009).

Like all CRiSPs, those from rear-fanged venoms exhibit 16

highly conserved cysteine residues forming eight disulfide

bonds (Heyborne & Mackessy, 2010), yet many of these

proteins appear to have very different pharmacological

activities. Some CRiSPs from front-fanged snake venoms

are non-enzymatic proteins exhibiting specific blocking

activities towards cyclic nucleotide-gated channels (Brown

et al., 1999; Yamazaki et al., 2002), high conductance

calcium-activated potassium channels (Wang et al., 2005) and

L-type Ca2+channels (Yamazaki et al., 2002). Patagonin, a

24.8 kDa CRiSP isolated from the venom of P. patagoniensis,

showed unique necrotic activity toward murine gastrocnemius

muscle when injected intramuscularly at doses of 43 and

87 mg, possibly by binding to the ion channels (Peichoto et al.,

2009). However, at 20 mg, patagonin did not induce edema or

hemorrhage, and it had no effect on the aggregation of human

platelets or platelet-rich plasma (at concentrations as high as

100 nM). Patagonin did neither induce platelet aggregation

directly nor inhibit platelet aggregation induced by ADP,

collagen, convulxin, thrombin, ristocetin or the divalent

cation ionophore A23187. This protein failed to inhibit

collagen-induced platelet adhesion and showed no proteolytic

activity toward azocoll, azocasein or fibrinogen.

10 A. J. Saviola et al. Toxin Rev, Early Online: 1–17
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Rear-fanged snake venom CRiSPs exhibited distinctive

behavior on endothelium denuded rat thoracic aortic rings

when compared to CRiSPs isolated from elapid and viperid

venoms, as neither patagonin nor tigrin showed activity

toward smooth muscle contractility (Peichoto et al., 2009). In

normal Krebs-bicarbonate solution, patagonin (2 mM) did

neither affect the basal tension of the denuded thoracic aortic

rings, nor affect contractions of rat aortic smooth muscle

induced by 60 mM K+. Tigrin, a 30 kDa CRiSP from

Rhabdophis tigrinus tigrinus, showed no effect on high K+-

or caffeine-induced contraction of helical strips of endothe-

lium-free rat-tail arterial smooth muscle (Yamazaki et al.,

2002). Other venom CRiSPs, such as albumin from

Agkistrodon blomhoffi venom, may also exhibit activity

towards L-type Ca2+-channels (Yamazaki et al., 2002),

which play a role in several important physiological

processes. L-type Ca2+ channel blockers have received

significant biomedical attention as they have been used to

treat hypertension (Rich et al., 1992) and cardiac arrhythmias

(Bodi et al., 2005). Since CRiSPs appear to be a common

protein in the venoms of many rear-fanged snakes, further

isolation and characterization of these proteins will not only

increase our understanding of CRiSP-receptor interactions,

but may also provide useful insights into novel therapeutics

for targeting specific receptors such as CNG channels.

Additional compounds isolated from rear-fanged

venoms may hold promise for development into useful anti-

hypertension therapeutics. Precursors of hypotensive and

vasodilator agents such as natriuretic peptides (NPs) have

been identified in front-fanged snake venoms (Higuchi et al.,

1999; Schweitz et al., 1992). The C-type natriuretic peptides

(CNP), which act as biological messengers and hypotensive/

vasodilator agents, have been identified in a several organ-

isms, and their ability to control blood vessel tone has

received significant attention (Barr et al., 1996; Lumsden

et al., 2010). Analyses of P. ofersii venom gland identified

relatively high abundance (�6.6% of expressed sequence

tags) of CNP precursors that exhibit N-terminal sequences

similar to elapid venom NPs, with C-terminal sequence

similar to viperid venom CNP precursors (Ching et al., 2006).

The identification of CNPs in a rear-fanged snake venom

suggests the potential for discovery of other CNPs in rear-

fanged venoms; additionally, it helps clarify the evolutionary

links between rear-fanged colubrid venom CNPs and the NPs

of elapid and viperid snake venoms. As NPs isolated from

snake venoms exhibit significant differences in structure and

function compared to mammalian NPs, they may represent

possible therapeutic options for treatment of hypertension.

Paralytic toxins

Three-finger toxins (3FTxs), including the well-characterized

a-neurotoxins, are 60–79 amino acid non-enzymatic proteins

common in the proteome of elapid venoms (Kini & Doley,

2010; Hegde et al., 2010; Nirthanan & Gwee, 2004).

However, it is now apparent that these compounds are often

abundant in the venoms of many rear-fanged snakes

(Figures 10 and 11; Fry et al., 2003a, 2008; Heyborne &

Mackessy, 2013; Lumsden et al., 2005; Mackessy, 2002;

Pawlak et al., 2006, 2009; Weinstein et al., 1993). The often

subtle differences in non-structural residues of 3FTxs allow

different members of this protein family to recognize, with a

high degree of specificity, an array of targets such as nicotinic

and muscarinic acetylcholine receptors (mAChRs; Kini &

Doley, 2010), the integrin aIIbb3, L-type Ca2+ channels (Kini,

2002), coagulation factor VIIa (Banerjee et al., 2005) and

b1/b2-adrenergic receptors (Rajagopalan et al., 2007). The

wide array of pharmacological activities on a conserved

molecular fold has made these proteins important models for

structure–function studies and has provided significant

insights into protein–receptor interactions, with high potential

for novel drug design. The mAChRs M1 and M4 have been

Figure 10. Sequence alignment of three-finger toxins (3FTxs) from several rear-fanged snake venoms and from five elapid venoms (red bar) and one
viperid venom (black bar). The bolded residues in loop II of rear-fanged snake toxins (asterisk) with taxon-specific effects toward lizards and birds
are absent from most rear-fanged snake 3FTxs and all elapid and viperid 3FTxs. Loop II residues of a-cobratoxin in red boxes are known to be involved
in receptor binding. Reproduced from Heyborne and Mackessy (2013).
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important pharmaceutical targets for conditions such as

Alzheimer’s and Parkinson’s diseases, respectively; however,

finding compounds with specific selectivity for mAChR

subtypes has been challenging (Bradley, 2000). The produc-

tion of chimeric 3FTxs with novel pharmacological activity

toward muscarinic receptors has shown occasionally to

exceed binding affinities expressed by the natural toxins

(Fruchart-Gaillard et al., 2012), and so the possibility exists

that the 3FTx scaffold could serve as a mutable template for

drug discovery efforts.

Neurotoxic effects of colubrid venoms towards neuromus-

cular junctions have been documented in numerous species,

and this activity appears to follow phylogenetic patterns

(Lumsden et al., 2004). At 10 mg/ml, venoms from Boiga

cynodon, B. d. dendrophilia, B. d. gemmicincta, B. drapiezii,

B. irregularis, B. nigriceps, Telescopus dhara and

Trimorphodon biscutatus induced time-dependent inhibition

of indirect twitches of chick isolated biventer cervicis nerve

muscle. At the same concentrations, all of these venoms

(except Trimorphodon biscutatus) inhibited contractile

responses to acetylcholine (1 mM) and carbachol (20 mM)

but not potassium chloride (40 mM; Lumsden et al., 2004).

In the same study, venom of Psammophis mossambicus

showed time-dependent inhibition of indirect twitches; how-

ever, this activity was reversed after 30 min incubation.

Ahaetulla prasina, Enhydris chinensis and Lioheterodon

madagascariensis venoms (10 mg/ml) all lacked inhibitory

effects on indirect twitches as well as on contractile

responses.

a-Colubritoxin, purified from C. radiatus venom is an

8.49 kDa, 79 amino acid 3FTx that exhibits reversible

antagonism at the nicotinic acetylcholine receptor (Fry

et al., 2003b). This reversibility differs from a-bungarotoxin

from the elapid Bungarus multicinctus, which is significantly

limited as an investigational pharmaceutical tool due to

its irreversibility. Boigatoxin-A, from Boiga dendrophilia

venom, an 8.7 kDa 3FTx, also exhibited weak reversible post-

synaptic blockage as indicated by inhibition of indirect

twitches to acetylcholine (1 mM) and carbachol (20 mM), in

addition to producing a reversible inhibition of electrically

stimulated twitches of the prostatic segment of the rat

vas deferens preventing the release of neurotransmitters

(Lumsden et al., 2005). Isolated from the venom of

Rhamphiophis oxyrhynchus, rufoxin, a 10.66 kDa neurotoxin,

showed time-dependent inhibition of indirect twitches of

chick-biventer cervicis nerve-muscle preparation, with partial

recovery of twitch height after 60 min washing. Rufoxin

also significantly inhibited contractions to nicotinic receptor

agonist such as acetylcholine and carbachol, but not potas-

sium chloride. Interestingly, this neurotoxin lacks N-terminus

sequence homology with other rear-fanged neurotoxins such

as a-colubritoxin, boigatoxin-A and denmotoxin (Lumsden

et al., 2007).

Taxon-specific effects of crude venom suggested that for

rear-fanged snake venoms, the inbred mouse model was likely

insufficient to evaluate biologically relevant pharmacological

effects (Mackessy et al., 2006). Denmotoxin, another 3FTx

from B. dendrophilia venom, contains 77 amino acid residues,

has a mass of 8.5 kDa, shares less than 30% sequence

homology with elapid 3FTXs and has approximately 50%

homology with a-colubritoxin. It exhibits potent and irre-

versible neuromuscular blockade of chick biventer cervicis

nerve muscle. Denmotoxin showed approximately 100-fold

weaker and reversible inhibition of indirectly stimulated

twitches in mouse hemidiaphragm nerve-muscle preparations

and was unable to produce complete blockage (Pawlak et al.,

2006). These results demonstrate that denmotoxin is able to

discriminate between the peripheral nicotinic acetylcholine

receptors from two distinct prey types (birds versus mam-

mals), and toxin specificity correlates with the feeding

ecology of these snakes (Pawlak et al., 2006). Similarly,

irditoxin, a covalently linked heterodimeric 3FTx from

B. irregularis venom, induced taxon-specific lethality via

respiratory paralysis in both chicks (LD50 ¼ 0.22mg/g)

and lizards (LD50¼ 0.55 mg/g), indicating a peripheral post-

synaptic neurotoxic effect. However, irditoxin was non-toxic

to mammalian prey (Mus musculus) at doses as high as

25 mg/g. Irditoxin also showed potent post-synaptic neuro-

muscular inhibition of avian skeletal muscle, and this effect

was three orders of magnitude lower on mammalian motor

endplate preparations (Pawlak et al., 2009). Another rear-

fanged 3FTx with taxon specificity was recently purified

from the venom of the Green Vinesnake (Oxybelis fulgidus),

and its structural features were analyzed for clues concerning

the observed specific toxicity toward lizards (Heyborne &

Mackessy, 2013). Comparative analyses of 3FTxs from many

colubrid and elapid snakes indicated that only those toxins

with known taxon-specific effects contained two canonical

sequences in loop two: CYTLY and WAVK (Figure 10).

This same region of loop II has been shown to be critical to

Figure 11. Backbone structural models of
taxon-specific three-finger toxins from a
neotropical colubrid (fulgimotoxin: Oxybelis
fulgidus) and an Asian colubrid (denmotoxin:
Boiga dendrophila). Note that both show
three-dimensional structures very similar to
elapid three-finger toxins. The red- (WAVK)
and blue-colored (CYTLY) regions of loop II
are hypothesized to be involved in the taxon-
specific effects of these toxins (Heyborne &
Mackessy, 2013). The five disulfides which
stabilize the canonical scaffold are shown in
yellow.
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acetylcholine receptor-binding of a-cobratoxin, strongly sug-

gesting that this region of the toxin is important to rear-fanged

3FTx binding as well. Molecular modeling of fulgimotoxin

and comparison with the X-ray crystal-based structure of

denmotoxin further showed that these sequences occur in

the same place within a highly spatially conserved region of

loop II (Figure 11). Further, modifications of 3FTx loops can

drastically influence binding affinity to specific receptors.

For example, synthesis of a chimeric 3FTx with an additional

loop on the central finger increased toxin binding to neuronal

a7 AchR by 20-fold when compared to the native toxin

(Mourier et al., 2000). In addition, loop grafting of loops 1

and 3 of muscarinic toxin 7 increased affinities towards a1A-

adrenoceptor significantly, up to 6000 times greater than that

exhibited by the native toxin (Fruchart-Gaillard et al., 2012).

It is now becoming clear that 3FTxs are abundant and

important components in the venoms of rear-fanged snakes,

particularly colubrine colubrids, and with their unique

receptor specificities, taxon-specific toxins may have utility

in design of compounds for potential therapeutics.

Phospholipase A2

Phospholipase A2 (PLA2) enzymes are esterolytic enzymes

that are one of the major pharmacologically active com-

pounds found in reptile venoms (Mackessy, 2010a). They are

one of the best-studied venom compounds, and these enzymes

induce varying pharmacological effects which disrupt normal

physiological processes (Kini, 1997); a single venom may

have several different isozymes with distinct activities, some

of which are independent of any enzyme hydrolytic activity.

Significant research has characterized many PLA2 enzymes

from the venoms of elapids and viperids (refer Doley et al.,

2010 for a review), yet most rear-fanged snake venoms were

once thought to lack PLA2 activity (Weinstein & Kardong,

1994). However, further research suggests that these enzymes

are broadly (if not commonly) distributed among these

venoms. In fact, PLA2 activity has been detected in

venoms of Boiga dendrophila, Diadophis punctatus

regalis, D. typus, Leptodeira annulata, Malpolon monspessu-

lanus, Philodryas nattereri, P. olfersii, P. patagoniensis,

Psammophis mossambicus (very low activity), Rhabdophis

subminiata, Telescopus dhara, Thelotornis capensis (very low

activity), Thamnodynastes strigatus, Tomodon dorsatus and

Trimorphodon biscutatus lambda (Broaders & Ryan, 1997;

Christensen, 1968; DuBourdieu et al., 1987; Durkin et al.,

1981; Ferlan et al., 1983; Hill & Mackessy, 2000; Huang &

Mackessy, 2004; Lumsden et al., 2004; Mebs, 1968;

Rosenberg et al., 1985; Zelanis et al., 2010). In a

transcriptomic analysis of P. olfersii venom gland, transcripts

coding for PLA2 were not observed (Ching et al., 2012), and

at present, non-enzymatic PLA2 toxins have not been detected

in rear-fanged snake venoms.

The first PLA2 characterized and partially sequenced

from a rear-fanged venom was trimorphin, a monomeric

13.9 kDa PLA2 (Figure 12A) from T. biscutatus lambda

(Huang & Mackessy, 2004). This PLA2 shared a high degree

of sequence homology with the group IA PLA2s, particu-

larly the Asp-49 enzymes characterized from several hydro-

phiine elapid venoms, and had optimal activity towards

4-nitro-3 -(octanoyloxy) benzoic acid substrate at pH of 7.5

(Figure 12B; Huang & Mackessy, 2004). More recently,

this enzyme was shown to have potential application as an

anti-leishmanial drug, and in vitro assays showed potent

cytotoxicity (IC50¼ 0.25 mM; Figure 12C) toward log-phase

promastigote stage Leishmania major (Peichoto et al., 2011a).

As T. b. lambda venom does not show cytotoxicity toward

an immortal, mammalian cell line (MCF-7 breast cancer;

Bradshaw et al., in review), it appears that effects of

trimorphin may be specific for Leishmania parasites.

Cytotoxic effects of rear-fanged snake venoms

Many snake venoms are generally cytotoxic, often due to the

presence of high levels of PLA2. However, a screen of several

different colubrid venoms indicated that they generally lacked

cytotoxicity toward human melanoma (A375) cell lines

(Figure 13). However, this lack of cytotoxicity does not

mean these venoms should be disregarded for further

examination of potential anti-neoplastic therapeutics.

Compounds in these venoms may inhibit or slow cell

proliferation when incubated with cells for relatively longer

periods of time, or they may impede pathways critical for

metastasis without exhibiting any cytoxicity towards cell

lines, as is observed with disintegrins such as vicrostatin

(Minea et al., 2010).

Anti-parasitic effects

Five venoms from rear-fanged snake species were recently

evaluated for potential anti-leishmanial activity. Several

species of the protistan parasites in the genus Leishmania

cause disfiguring cutaneous diseases in humans, and several

others cause debilitating (and sometimes fatal) visceral

leishmaniasis (Desjeux, 1992; Rath et al., 2003). Exposure

to relatively high levels of rear-fanged snake venoms resulted

in cytotoxicity toward cultured promastigote stages of

L. major, but venom of only one species tested,

T. b. lambda, showed significant cytotoxicity at lower doses

(Peichoto et al., 2011a). It was also shown that the PLA2,

trimorphin (mentioned above), previously isolated from

this venom (Huang & Mackessy, 2004) was responsible for

potent cytotoxic effects, as demonstrated by the effects of the

purified toxin (Figure 8C).

Future directions in rear-fanged snake
venom research

Investigations of venom systems allow for a detailed under-

standing of the biological roles of venom compounds (Saviola

et al., 2013) and evolutionary relationships among venomous

snakes (Lomonte et al., 2014), and it provides information

that may be utilized for novel drug discovery (Takacs &

Nathan, 2014; Vonk et al., 2011). As trophic adaptations,

venoms can be expected to vary significantly based on diet, as

different prey types are differentially sensitive to specific

toxins. The broad array of prey preferences seen among rear-

fanged snakes (Greene, 1997) suggested that venom compos-

ition may vary drastically compared to elapids or viperids,

and we are beginning to see that this prediction holds true,

as exemplified by several novel venom protein families

found in rear-fanged snake venoms (Ching et al., 2012;
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OmPraba et al., 2010). Although rear-fanged snake venoms

still remain relatively understudied, within the last decade,

research investigating these venoms has significantly

increased, providing a better understanding of the compos-

ition, functions and biological roles of venoms generally.

These venoms are proving to be rich sources of compounds

with potent biological activities, and they represent a vast and

largely untapped source of toxin diversity which is likely to

contain further novel compounds and new pharmacological

activities. Proper evaluations of the biological activities

of venom compounds are essential to further our understand-

ing of and therapeutic benefit from these components.

As venomic approaches (Calvete, 2013) are applied to rear-

fanged snake venoms, identification and characterization of

proteins and peptides will accelerate, and discovery of unique

biochemical and pharmacological properties may also lead

to the development of novel protein drugs. Further transcrip-

tomic and proteomic analyses of these venoms, coupled with

functional assays of venom proteins, will also help clarify our

understanding of evolutionary trends among all venomous

snakes, as well as identify species that may be of medical

importance with regards to human envenomations.
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