# Determining Dietary Niche in Primates Using Portable X-Ray Fluorescence

UNIVERSITY OF NORTHERN COLORADO

#### Introduction

- Dietary reconstructions can tell a lot about an animal's life, but often rely on destructive methods.
- ➤ X-Ray fluorescence (pXRF) is a non-destructive method of gathering elemental data from skeletal remains, plants, etc.
- ➤ However, there is a gap in studying its implementation for dietary reconstructions.
- ➤ In this study, we examine if folivores (leaf-eaters) and frugivores (fruit-eaters) differ in their strontium-calcium (Sr/Ca) ratios.
- ➤ Strontium(Sr) is a non-essential element found in soil, is taken up by plants and the body.
- Calcium(Ca) is essential for bone growth and development.
- These elements are atomically similar and the ratio at which you find them in tissues such as teeth and bones differs based on diet.

#### Research Question

To what extent can we reconstruct the diets of an unknown primate sample using portable XRF?

### Hypothesis

Primates with low Sr/Ca ratios will have eaten a diet of fruits whereas, primates with high Sr/Ca ratios will have had a diet of leaves and stems.

Theresa Schwartz
Mentor: Marian Hamilton Ph.D.

| Comparative study  |                 |             |     |          |          |
|--------------------|-----------------|-------------|-----|----------|----------|
| ID#                | Genus           | Species     | Sex | Age      | Diet     |
| #07652<br>"Treese" | Chlorocebus     | Pygerythrus | F   | Adult    | Folivore |
| #07645             | Colobus<br>spp. |             | F   | Juvenile | Folivore |
| #07648             | Macaca<br>spp.  |             | U   | Juvenile | Omnivore |
| #07643             | Chlorocebus     | Pygerythrus | М   | Adult    | Folivore |
| #07653             | Chlorocebus     | Pygerythrus | М   | Juvenile | Folivore |
| #09629"Food"       | Chlorocebus     | Pygerythrus | М   | Adult    | Folivore |

#### Methods

> X-ray fluorescence works via a laser that expel low- level X-rays onto a surface (in this case teeth) causing the emission of a photon. An elemental signature is indicated by the resulting energy spectrum, which includes energy peaks for each unique element present.

➤ I collected qualitative and quantitative spectra from two teeth (preferably an incisor, canine, or molar) and the occipital bone of the skull.

#### Sample Primate skeletons were donated to UNC with unknown background, likely from a North American zoo. Results .0015000000000000 Molar .0010000000000000 Incisor Skull .0005000000000000 .0000000000000000 7,643 7,653 7,645 9629food 7,648 7652treese Primate\_ID

# P Ca Fe

# Discussion

SCA ats

- As expected, based on the comparative study, all samples have ratios more in line with folivory than frugivory.
- ➤ Primate 07648 had the widest variation in samples indicating an omnivorous diet.
  - ➤ Primate 09629 "food" had the least variation indicating specialization.
  - In all but one primate, the occipital bone had a lower Sr/Ca ratio than enamel.
  - Likely due to increased Ca levels in bone relative to enamel.
  - This study was not able to test its original hypothesis due to a lack of frugivore samples.
  - These results show that pXRF analysis can indicate dietary breadth (omnivory vs. specialization).
  - ➤ I would like to implement pXRF on a greater scale with more samples and on our ancestral bipeds.

# Acknowledgments

I would like to thank my mentor, Dr.
Marian Hamilton, the University of
Northern Colorado, and the McNair
scholar's program for allowing me to do
this research.

References

