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Loops versus lines and the compression stiffening
of cells

M. C. Gandikota,*a Katarzyna Pogoda, bc Anne van Oosten,bd T. A. Engstrom,a

A. E. Patteson,a P. A. Janmeybe and J. M. Schwarz *af

Both animal and plant tissue exhibit a nonlinear rheological phenomenon known as compression

stiffening, or an increase in moduli with increasing uniaxial compressive strain. Does such a

phenomenon exist in single cells, which are the building blocks of tissues? One expects an individual

cell to compression soften since the semiflexible biopolymer-based cytoskeletal network maintains the

mechanical integrity of the cell and in vitro semiflexible biopolymer networks typically compression

soften. To the contrary, we find that mouse embryonic fibroblasts (mEFs) compression stiffen under

uniaxial compression via atomic force microscopy studies. To understand this finding, we uncover

several potential mechanisms for compression stiffening. First, we study a single semiflexible polymer

loop modeling the actomyosin cortex enclosing a viscous medium modeled as an incompressible

fluid. Second, we study a two-dimensional semiflexible polymer/fiber network interspersed with area-

conserving loops, which are a proxy for vesicles and fluid-based organelles. Third, we study two-

dimensional fiber networks with angular-constraining crosslinks, i.e. semiflexible loops on the mesh

scale. In the latter two cases, the loops act as geometric constraints on the fiber network to help stiffen

it via increased angular interactions. We find that the single semiflexible polymer loop model agrees well

with the experimental cell compression stiffening finding until approximately 35% compressive strain

after which bulk fiber network effects may contribute. We also find for the fiber network with

area-conserving loops model that the stress–strain curves are sensitive to the packing fraction and size

distribution of the area-conserving loops, thereby creating a mechanical fingerprint across different cell

types. Finally, we make comparisons between this model and experiments on fibrin networks interlaced

with beads as well as discuss implications for single cell compression stiffening at the tissue scale.

I. Introduction
Compression stiffening, a nonlinear rheological property in
which a material’s moduli increase with increasing uniaxial
compressive strain, has recently been discovered in several
types of animal and plant tissues.1–3 Some of these tissues
contain a filamentous extracellular matrix, while others do not.
Given these studies, a natural question emerges: Since indivi-
dual cells are the building block of tissues, do individual cells

compression stiffen? Should the answer to this question
be affirmative, one cannot necessarily conclude that tissues
compression stiffen given the possibility of emergent, collective
mechanical phenomena, however, answering the question is
surely a reasonable starting point. Interestingly, we will explore
the possibility of emergent mechanical phenomena within an
individual cell.

From a mechanical perspective, the cytoskeleton gives the
cell its structural integrity. The cytoskeleton consists of actin
filaments, intermediate filaments, and microtubules,4 all of
which are semiflexible biopolymers.5 Semiflexible polymers
have a characteristic persistence length lp such that for lengths-
cales much lower than lp, they act as rigid rods, while for length
scales much larger than lp, they act as flexible (Gaussian)
polymers. A typical persistence length for intermediate filaments
is approximately 1 micron,6 while for actin it is approximately 17
microns.7,8 These semiflexible polymers crosslink to form a
composite semiflexible polymer network. Actin dominates near
the periphery of the cell.4 In contrast, vimentin, an intermediate
filament, is localized more around the nucleus and other
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organelles to presumably anchor them in place.9,10 Vimentin
also enhances the elasticity of a cell with the enhancement
increasing with increasing substrate stiffness11 as well as sup-
presses nuclear damage in cells undergoing large deformations.12

If the mechanics of the cell is dominated by the cytoskele-
ton, then one can directly probe the mechanics of in vitro
semiflexible biopolymer networks to understand the mechanics
of a cell. Such networks strain-stiffen under shear.13,14 On the
other hand, semiflexible biopolymer networks typically soften
under compression.15 Both mechanical responses are related to
the mechanics of a single semiflexible polymer. An individual
semiflexible polymer extension stiffens, i.e. its elastic modulus
increases with extension strain, and compression softens,
i.e. its elastic modulus decreases with compressive strain.16,17

Stiff and semiflexible polymers compression soften as a con-
sequence of the Euler-buckling instability with the transition
being more gradual in the latter case due to the presence of
fluctuations.18,19 Shear strain stiffening of semiflexible polymer
networks is due to stretching out the polymers, combined with
semiflexible polymers buckling orthogonal to the ones that
stretch the most.13 In such systems, the filament density must
be small enough to allow for the lengthening of the polymers.
Compression softening at the network scale is attributed to
filaments buckling, which then no longer contribute to the
stiffness of the network as it is compressed.15

If the cytoskeleton compression softens, such as in vitro
semiflexible polymer networks do,15 then how do cells protect
themselves against compressive strains? Of course, cells are not
just bags containing semiflexible biopolymer networks that can
rearrange, they are also filled with vesicles and organelles. Does
the presence of vesicles and organelles then help protect the
cell against compressive strains? More specifically, if vesicles
and organelles are modeled as regions of incompressible fluid,
does the presence of such structures promote compression
softening? Or, do they contribute to compression stiffening?
And what about organelles that are elastic in nature? A majority
of our modeling will focus on fluid-like organelles. In addition,
one can ask how does the typical mechanics of semiflexible
biopolymer networks change in the presence of angle-constraining
cross-linkers? To date, most modeling has focused on freely-
rotating crosslinkers17 with the exception of ref. 20–22. With
angle-constraining crosslinkers, one introduces semiflexible
polymer loops at the network mesh scale. Unlike a semiflexible
filament, a semiflexible loop does not buckle in plane and so
one may expect the mechanics to differ.

We will answer some of these questions by first conducting
an experiment to determine whether or not cells compression
stiffen or compression soften. We will find that cells do
compression stiffen, intriguingly. We will, therefore, investigate
the role of vesicles and organelles embedded in a semiflexible
polymer network (hereafter termed a fiber/fibrous network) and
semiflexible polymer loops at the network mesh scale and at
the cortex scale-to look for various mechanisms of compres-
sional stiffening. We will also study experimentally an in vitro
fiber network embedded with beads so that we, in part, can
more directly test ideas developed in our modeling.

The paper is organized as follows. We first present our
experimental results, then we present our modeling and
discuss how the modeling results can used to interpret the
experimental results. We conclude with a summary and dis-
cussion of implications of compression stiffening at the cell
scale and how it may inform how compression stiffening occurs
at the tissue scale.1,2

II. Experiments
To study the nature of compression stiffening in cells, we
conduct two different experiments. The first is whole cell
compression of mouse embryonic fibroblasts (mEFs) and the
second is compression of a fibrin network embedded with
beads. Since the cell contains both a boundary actomyosin
cortex and a bulk fiber network, with the second experiment we
are able to identify compression stiffening coming solely from a
bulk fibrous network.

Whole cell compression

Experiments with whole cell compression of mouse embryonic
fibroblasts (mEFs) were performed using a JPK Nanowizard
4 atomic force microscope equipped with cantilevers of a
nominal stiffness of 2.4 Nm!1 with a 25 mm diameter sphere
attached (Novascan), according to a previously published
protocol23 with minor modifications. Briefly, cells were trypsi-
nized in order to round up and detach from the surface of the
TC flask. Next, cells were centrifuged and resuspended in
growing medium. Immediately round cells were placed on a
Petri dish which was mounted on the AFM stage and indented
uniaxially with a constant force of 450 nN at a speed of 5 mm s!1

as follows: (i) the AFM cantilever was placed over the rounded
cell as controlled visually through the optical microscope,
(ii) the point of contact between the cantilever and cell surface
was recorded and assumed to be the cell height, (iii) each cell
was indented until 450 nN force was reached and data were
saved automatically as force (nN) vs. distance curves (mm). Such
curves were then converted into stress (kPa) vs. cell height (%)
with the assumption that normal stress can be calculated as the
ratio of the applied force (F) to the area of deformation.
The area of deformation A was calculated as a spherical cap
of the sphere, or A = 2prh where r is the radius of the sphere and
h is the depth at which cell was indented. The cell height
percentage was calculated as the percentage of the total cell
height that underwent indentation at a given force. Assuming
that the strain is 0% at 100% cell height, then the cell height
can be converted to a strain percentage by subtracting the cell
height percentage from 100%. Finally, the stress is then given
by the ratio of the force to the area of deformation. The data
was obtained from 10 cells and averaged over with the error bar
denoting the standard deviation.

As evidenced by the stress–strain curve, these cells exhibit
compression stiffening (see Fig. 1). Compression stiffening can
be defined as a non-linear phenomenon in which the elastic
modulus of the system increases with increasing compression,
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which is to be contrasted with uniaxially straining a Hookean
spring where the spring constant remains independent of the
strain. We define the strain at which the compression stiffening
sets in as gc. See Table 1 for the definition of this parameter and
others used in the manuscript. The compression stiffening results
of the mEF cell are a surprising mechanical response of the cell.
The cytoskeleton, being a semiflexible polymer network is expected
to compression soften due to the buckling of individual polymers.
This disagreement between experiment and cell modeling necessi-
tates a need to find new mechanisms for the observed behavior.

Fibrin network compression

The experimental protocol follows ref. 24 in which further
experimental details are provided.

To study fibrin networks with embedded inert beads, fibrino-
gen isolated from human plasma (CalBioChem, EMD Millipore,

Billerica, MA, USA) was dissolved in buffer. To prepare fibrin
networks, fibrinogen, thrombin, 1" T7 buffer, and CaCl2 solution
were combined to yield 10 mg mL!1 fibrinogen, 30 mM Ca2 +, and
2 U mL!1 thrombin and allowed to polymerize between the
rheometer plates for 1.5–2 hours at 37 1C and then surrounded
with T7 buffer. Beads made from cross-linked dextran (Sephadex
G-25 medium, GE Health Sciences, Marlborough, MA) were
swollen with H2O to accomplish a 92% swelling. The volume
needed for 92% swelling was extrapolated from the amount of
water needed for 100% swelling. The 100% swelling was deter-
mined by allowing pre-weighed beads to swell for 12 hours in
excess amounts of ddH2O. The suspension was centrifuged at
2200 " g for 30 minutes, and the weight of volume of beads and
excess water were determined.

Fibrin networks with adherent beads: fibrinogen 1 and
thrombin 2 purified from salmon plasma (Sea Run Holdings,
Freeport, ME, USA) were dissolved in 50 mM Tris, 150 mM
NaCl, pH 7.4 (T7 buffer). Anion exchange chromatography
beads (SP Sephadex C-25, GE Health Sciences, Marlborough,
MA) to which fibrin binds were swollen to their equilibrium
size in the same buffer.

For rheometry, fibrinogen, T7 buffer, CaCl2 solution, thrombin
and water were mixed together first and then added to a bead
solution to yield a fibrin network of the required concentration in
a 1" T7 buffer with 0.5 U thrombin per mL sample and the
required volume of beads. Samples were polymerized between the
rheometer plates for 90 minutes at 25 1C and surrounded by
T7 buffer.

The experimental findings are as follows. Without beads, a
0.1% fibrin network does not compression stiffen. However,
even with just 14% packing percentage of adherent beads, the
fibrin network compression stiffens around 30% compressive
strain. See Fig. 2. This small packing fraction is far below both
the packing percentage of random loose packing (55%)25 and
random close packing (64%)26 of beads in three-dimensions.
Thus the effect is not due to the jamming of the beads but
rather an effect of the composite system. With inert beads and a
1% fibrin network, there is no compression stiffening until the
packing percentage of beads is 60% (see ref. 24).

III. Cell as a viscous interior
surrounded by a cortex
The simplest mechanical model for a cell is perhaps an actin
cortex surrounding the periphery of the cell with an incom-
pressible fluid inside. In other words, there is no rigid fiber
network spanning across the cell and so we neglect its mechan-
ical contribution. Without such a fiber network, organelles and
vesicles remain disconnected at the cell scale and so act as
viscous agents. For simplicity, we assume a two-dimensional
geometry and will later address under what conditions is such
a geometry applicable for a three-dimensional experiment.
We model a cell as a loop (polygon) with a perimeter composed
of springs that can stretch and bend and the polygon contains
an incompressible fluid (see Fig. 3a), i.e. the area enclosing the

Table 1 Definitions of symbols

Definition Value

gc Strain at onset of compression stiffening
s Compressive stress
Kcf Central force spring constant
Ksf Semiflexible angular spring constant
lo Distance between neighboring vertices at

zero strain
~k

Dimensionless constant –
Kcf l02

Ksf

0.006–0.96

Kxlink Crosslinker angular spring constant
p Bond occupation probability 0.5–1
f Packing fraction of area conserving loops 0.04–0.25
l Lagrange multiplier
KA Area-conserving loop ‘‘spring’’ constant
A0 Preferred area

Fig. 1 Compressive stress versus compressive strain for wild-type mouse
embryo fibroblast cells. The symbols represent the data and the line
represents a linear fit to the data for up to 20% strain. We observe the
onset of compression stiffening around gc E 20%. The inset is a schematic
of the experiment where the AFM tip is attached to a glass bead (blue)
which in turn applies a global strain on the mEF cell (salmon). The data is
averaged over ten mEF cells with the error bars denoting the standard
deviation.
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polygon is conserved. The Hamiltonian for a cell as a viscous
interior surrounded by a cortex, Hv+c with v denoting viscous
interior and c denoting cortex, is then

Hvþc ¼
1

2
Kcf

X

hiji
ðlij ! loÞ2 þ

1

2
Ksf

X

hijki
ðyijk ! yoÞ2

þ lðA! A0Þ;

(1)

where lij is the length of a spring between vertices i and j and
l0 is the corresponding rest length. Additionally, yijk is the angle
between the polygon edges flanking the jth vertex and yo is its
rest angle. Moreover, A is the area of the polygon and A0 is its
preferred area, which is simply its initial area, and l denotes
the Lagrange multiplier. Finally, Kcf and Ksf denote the spring
stiffness and bending stiffness respectively.

At zero strain, a regular polygon of area A0, is chosen as the
initial configuration such that Hv+c = 0, i.e. there is no pre-stress
in the system. The vertices forming the polygon are then
confined to be within two rigid lines. These lines are the two-
dimensional equivalent of the compression plates in the experi-
ment. Uniaxial compressive strain is applied by updating the
position of the two parallel rigid lines and reducing the
distance between them. Numerical minimization of the energy
as defined in eqn (1) at various strains is performed using the
SLSQP minimization algorithm in Python. This algorithm
permits minimization while obeying strict constraints. The
compressive stress is defined as

s ¼ 1

A

@ !Hvþc

@g
(2)

where %Hv+c is the numerically minimized energy at a given
strain.

For bending stiffness Ksf = 0, by Maxwell constraint-counting
of just the central-force springs, one would expect the loop not
to be rigid at all for small strains.27 And yet, the energy of the
polygon increases with increasing strain (see Fig. 3b). This is
solely due to the area conservation imposed on the loop during
compression. Such a conservation can be thought of as exerting
an outward ‘‘pressure’’ onto the edges, making it untenable for
the system to access its floppy modes. In the absence of
bending, does such a loop compression stiffen? We find a
cubic stress–strain profile that can be understood via a minimal
4-polygon analytical calculation (see Fig. 3b and Appendix A)
that makes an excellent fit to numerical results for higher
polygons, i.e.

s p g3. (3)

In other words, the compressive strain at which the loop
compression stiffens, gc, is zero in that the stress–strain curve
is nonlinear for all strains. This cubic stress–strain curve is
qualitatively different from the curves observed in Fig. 1. This
model, however, may be in agreement with the single cell

Fig. 3 A cell as a viscous interior surrounded by an actomyosin cortex. (a) The schematic of the system with central force spring (black) between
neighboring vertices (blue) and angular spring (red) across a vertex. The spring constants are Kcf and Ksf respectively. The area of the polygon is preserved
as the system is uniaxially compressed. (b) With just the central force springs, energy is seen to be quartic at small strain. Analytical calculations confirm
the same (see Appendix (A)). (c) Adding angular springs to the system brings linear behaviour at small strain since bending energy is quadratic at small
strain (see Appendix A). This delays the onset of non-linearity effected by the central force springs. The onset of non-linearity is tuned by changing ~k. (d)
Heat map for the ratio of stretching and bending energy, Ecf/Esf as a function of ~k and strain. The solid black line is an analytical estimate separating the
bending and stretching regimes. The shape of the polygon at 30% strain for ~k ¼ 0:006 (dark-violet) is ellipse-like and for ~k ¼ 0:960 (blue) is pill shaped. All
numerical results were obtained using a 32-gon.

Fig. 2 Compressive stress versus compressive strain for a fibrin fiber net-
work with and without adherent dextran beads. The symbols represent the
data and the lines represent a linear fit to the data for up to 20% strain. In the
absence of beads, we do not observe compression stiffening. In the presence
of 14% packing percentage of adherent beads, we do observe compressional
stiffening around gc E 30%. Error bars denote standard deviation.
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compression experiments on T-lymphoma cells presented in
ref. 28. In these experiments the cell is compressed between
surfaces which are large compared to the dimension of the cell,
thus the compression applies a global force on the cell. However,
unlike compressive stress reported here, ref. 28 reports compres-
sive force and fit their data using the above scaling. The authors
show this fit to be good up to B30% strain.

While the Ksf = 0 limit demonstrates compression stiffening,
there is no linear stress–strain regime as observed for the MEF
case. For Ksf 4 0, the perimeter of the polygon is now a
stretchable semiflexible polymer. We do not consider buckling in
our model since semiflexible polymer loops with area conservation
acting as a ‘‘pressure’’, pushes the perimeter outwards, eliminating
the possibility of buckling in this two-dimensional system. The
competition between bending energy and area conservation has
earlier been investigated in the context of finding the equilibrium
shape of the loop.29 Here, since an additional parameter Ksf is
introduced in the Hamiltonian, a tunable, dimensionless para-
meter ~k can now be defined. Specifically,

~k ¼ Kcf l0
2

Ksf
: (4)

Numerical minimization of Hv+c shows compression stiffen-
ing with the added feature of having linear response at small
strain (see Fig. 3c). The linear stress response at small strain is
an outcome of adding angular springs to the polygon.
An analytical calculation at small strains for this linear beha-
vior for a 4-gon is presented in Appendix A. At larger strains,
with growing compressive strain, the compressive stress
increases more rapidly than a linear response. We see similar
behaviour when a ‘‘soft’’ area constraint is used in contrast to
the ‘‘hard’’ area constraint employed here. See Section A.

The energetics and the shape of the loop is determined by
the dimensionless parameter ~k and the compressive strain g.
The heat map in Fig. 3d studies the ratio of stretching to
bending energy, Ecf/Esf as a function of both parameters. The
black crossover line is obtained by equating the stretching and
bending energies up to fourth order in the strain (see eqn (A3)
and (A4)). For ~ko 1, the system assumes an ellipse-like shape
where angles are more conserved than distances between the
vertices. Appendix A details a small strain calculation in the
ellipse-like limit. For higher ~k, i.e. ~k ' 1 and ~k( 1, the system
assumes a minimal pill shape in which distances between the
vertices are more conserved. Pill-shaped surface have earlier
been studied in the context of sea urchin eggs.30

At low and medium strains in the heat map, ~k determines
the domination of stretching or bending energy. For ~ko 1, the
ellipse-like loop response is stretching dominated. For higher
~k, the strain at which the pill-shaped loop transitions from
bending to stretching is inversely proportional to ~k. A larger ~k
makes the loop less costly to bend and so bending energy
contributes little to the total elastic energy. At a strain of around
40%, the system’s response to increasing ~k is stretching -
bending - stretching dominated. This is distinctly different
from shearing a fiber network where the system’s response to

increasing ~k is stretching - bending dominated.31 Of course,
the loop has a very simple network topology.

At high strains, the system is stretching dominated for all ~k.
For ~ko 1, this is in line with the expectation for the ellipse-like
loop. For higher ~k’s, the angular springs of the pill-shaped loop
that are in contact with the compression walls no longer con-
tribute to the change in bending energy. The change in bending
energy of the system then is proportional only to the number of
vertices on the sides of the loop. As the number of vertices on the
sides of the loop decreases with strain, the elasticity of the system
becomes increasingly governed by the stretching energy. Inciden-
tally, the shearing of floppy fiber networks at large strains to
induce rigidity appears to be stretching-dominated as well.

IV. Cell as a collection of organelles
within a fiber network
We now ask how does the presence of a spanning, rigid fiber
network affect the compression mechanics of a cell? While one
cytoskeletal fiber type may not necessarily span the cell in a cross-
linked network, a composite one is more likely to, particularly
given the various means of couplings between the different
filament types.32 Since an individual in vitro fiber network typi-
cally compression softens, one anticipates that a composite fiber
network compression softens as well, though we leave that as an
open question. For now, we look to other components of the cell
to determine how they affect the mechanics. Cells contain orga-
nelles that can be more fluid-based or more elastic in nature, and
they contain vesicles. We will focus on the effect of fluid-based
organelles and vesicles in this section and address elastic-based
organelles in Section V. For simplicity, our modeling will be done
in two-dimensions. Prior modeling has demonstrated that two-
dimensional fiber network modeling qualitatively captures three-
dimensional fiber network experiments.33 We will address the
effect of dimensionality in Section V.

Therefore, we present a model with a network of fibers that are
stretchable and bendable and with freely-rotating crosslinks. The
fiber network also contains fluid-based organelles and vesicles as
area-conserving loops randomly interspersed throughout. The
compositeness of the cell focuses on the fibers and area-
conserving loop mixture. We work with a triangular lattice whose
bonds can be diluted randomly and independently to become a
disordered triangular lattice. The fibers reside on the bonds of
this lattice and the area-conserving loops are represented as
triangles. See Fig. 4a. The Hamiltonian for the cell as a collection
of organelles within a fiber network, Ho+fn with o denoting
organelles and fn denoting fiber network, is then

Hoþfn ¼
1

2
Kcf

X

hiji
pijðlij ! l0Þ2

þ 1

2
Ksf

X

ijk¼p
pijpjkðyijk ! pÞ2

þ KA

X

i0¼1
qi0ðAi0 ! A0Þ2:

(5)
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The two-body interactions of the central force springs with rest
length l0 is accounted by summing over neighboring indices i,j.
The pi,js are random variables governing bond occupation and
introduce disorder in the system. Specifically, pi,j is one with
probability p (or zero with probability 1 ! p) signifying an
occupied (or unoccupied) bond between vertices i and j. The
three-body interactions of the angular springs are accounted for
by summing over three neighboring and collinear indices ijk. The
rest angle of the angular spring is p, i.e. a straight fiber is the
lowest bending energy configuration. The product of the random
variables ensures that the bending term is non-zero only if both
the central-force springs flanking the vertex are present. We work
in the limit near Kcfl0

2/Ksf = 1 since bulk intermediate filaments,
such as vimentin, are more stretchable than actin, for example.34

Area-conserving loops are introduced as ‘‘area springs’’ instead of
using Lagrange multipliers (as in Section III), the choice being
made for computational simplicity. The area spring penalizes
deviations from the preferred area A0. To ensure that the area

springs contribute only minimally to the total elastic energy, the
area spring stiffness is set to be three orders of magnitude larger
than the central force spring stiffness, i.e. KAl0

2/Kcf = 103. We can
then explore the effect of area-conserving loops on the mechanics
of the fiber network. For each i’th triangle in the network, qi’ is one
with probability f or zero otherwise. Here, f is the packing
fraction of the area conserving loops in the network. Finally,
we implement open boundary conditions with the vertices con-
strained between two rigid lines. As before (see Section III),
the network is not prestressed initially and Ho+fn is minimized
for different compressive strains to obtain the stress–strain
dependence.

With KA = 0, we begin with no organelles and look for
compressional softening. We must emphasize that we have
not implemented buckling at the single fiber level. Instead, we
seek a more collective compression softening mechanism.
To do so, we begin with an ordered lattice (p = 1) where we
see the network exhibit an affine response under compression

Fig. 4 Cell as a collection of organelles within a fiber network. (a) Immuno-fluorescence/phase contrast images of vimentin (green) and F-actin (red) in
mouse embryonic fibroblasts adhered to glass slides demonstrating both a bulk fiber network and a boundary cortex. The dark spots are vesicles. The
scale bar is 20 mm. We model the bulk fiber network as a randomly diluted triangular lattice. Each bond in the lattice denotes a central force spring. A pair
of collinear bonds denotes an angular spring across its central vertex. Disorder is introduced by random dilution of bonds. Organelles are introduced via
area-conserving loops, which are triangular in shape given the underlying structure of the lattice. (b) The fiber network compression softens in the
absence of area-conserving loops. Data points are from simulations of a fully occupied lattice. Solid black lines are the analytical fits obtained by
minimization of affine network energy (see Appendix B) and are scaled here to fit with the numerical data. The nonlinear response of the central force
springs in the network causes compression softening, which is different and independent of the buckling mechanism. (d) For a given strain, the response
of the network is influenced by the presence of area conserving loops. With no loops, an affine response is observed. Area-conserving loops influence the
position and warping of the compressed layer. These non-affine deformations introduced by area conserving loops cause compression stiffening.
(c and e) The size distribution of the area-conserving loops affects the elastic response of the system. For a given packing fraction f, both networks have
the same number of area-conserving loops, however (e) has the area-conserving loops linked together in pairs for three packing fractions. For
comparison, three curves from (c) are also shown in (e). All numerical results were obtained using an occupation probability of p = 0.9, Kcfl0

2/Ksf = 1 and
curves were averaged over 100 runs on a 12 " 12 lattice.
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and extension. In the affine regime, straight fibers in the
network remain straight fibers and thus angular springs do
not contribute to the elastic energy. We numerically find that
the compression response of the network is in sharp contrast to
extension, the latter of which remains linear throughout. See
Fig. 3b for the stress–strain curves. More specifically, the fiber
network compression softens.

A physical explanation for the softening is that when the
network is compressed, the springs increasingly align along the
transverse axis of compression. It is then easier to compress the
system at larger strains for this given choice of orientation of
the triangular lattice. See Appendix B for the details of an
analytical calculation quantifying the compression softening.
Is this softening generic? For a triangular lattice rotated by
90 degrees, there would be no compressive softening since in
the direction of compressive strain there would always be
springs co-linear with the compression axis. In contrast, for
any rotation less than 90 degrees, there will be compression
softening since there are no springs co-linear with the compres-
sion axis. Therefore, the 90 degree rotation is a singular case
and not generic (see Fig. 13).

This compression softening phenomenon is independent of
the buckling of semiflexible polymers, which until now has
been considered to be a dominant reason for compression
softening of such networks. The signature of compression
softening is also observed for disordered lattices with p o 1
(see Fig. 14 in Appendix B). We also note that this softening is
distinct from the mechanism of mechanical collapse studied in
central-force networks under biaxial compression in which a
martensite-like transition occurs during the collapse.35,36 This
martensite-like transition occurs in the absence of semiflexi-
bility and in general when Ksf { Kcfl0

2. Compression softening
has earlier been observed in a tensegrity model of a cell.37

What can we expect when we include organelles as area-
conserving loops into the fiber network? While working with our
initial cell as a viscous medium surrounded by an actomyosin
cortex, we saw that despite a loop of central-force springs being
floppy according to Maxwell constraint counting, the area-
conserving loop creates nonlinear rigidity as evidenced by the
compressional stiffening with gc = 0. The addition of bending
leads to a linear regime at small strains. Will adding area-
conserving loops to the fiber network do the same even if they
are only few in numbers? There are two competing factors at work
here – the network’s compression softening and the area-
conserving loop’s compression stiffening. We now investigate
this competition by varying f, the packing fraction of area-
conserving loops.

With KA c 0, area-conserving loops break the affine response
of the network. A force balance argument (see Appendix (B))
shows that an area-conserving loop necessitates the angular
springs around it to bend to ensure local mechanical equilibrium.
Angular springs earlier did not contribute to the elastic energy in
the affine response of the fiber network with no area-conserving
loops. Given the non-affine deformations introduced by the area-
conserving loops, angular springs begin to contribute to the total
elastic energy of the system. To see bending modes in the network

as the fibers bend to deform around the ‘‘obstacle’’, if you will,
see Fig. 4d. These bending modes, therefore, lead to a compres-
sion stiffening response (see Fig. 4c) as the ‘‘obstacles’’ prevent
the collapse of three springs along the three lattice lines of the
triangular lattice onto one line. The affine stretching-led com-
pression softening competes with the non-affine bending-led
compression stiffening. This argument is independent of system
size and so we have checked that this mechanics persists in both
smaller and larger systems (see Fig. 16 in Appendix B).

If the cost of bending is too large, the area-conserving loops
will simply deform even for small strains and the fiber network
will remain affine even at large strains so that the bending
contribution must not be much greater than the stretching
contribution in order to observe this compression stiffening.
On the other hand, if the cost of bending is too small, then the
fibers will easily deform around the organelles. This energetic
contribution may or may not be enough to combat the com-
pression softening due to the stretching. So the compression
stiffening robustly occurs in the regime when bending energy is
comparable to the stretching energy.

Interestingly, even a few area-conserving loops (f = 0.04) are
sufficient for the angular springs to subdue the compression
softening of the fiber network (see Fig. 4c). With more area-
conserving loops, the fibers are forced to bend more and
therefore contribute to compression stiffening of the fiber
network at smaller strains. It is additionally observed that the
stress response is not just determined by the number of area-
conserving loops in the network but also by their size distribu-
tion. Keeping the packing fraction f constant and now pairing
up the area-conserving loops, the stresses are not as large in
comparison to a network whose area-conserving loops are
randomly distributed (see Fig. 4e). Since the stresses are not
as large, the onset of the compressional stiffening is delayed to
a larger gc. This pairing up localizes the area-conserving loops
as compared to the un-paired case such that there are effec-
tively fewer obstacles to distort around. Therefore, the stress–
strain curves are not only sensitive to the packing fraction of
the fluid-based organelles and vesicles but also to their size
distribution. In other words, the stress–strain curves are a
mechanical fingerprint of the innards of a cell and one can
study how the size distribution of such structures affects the
mechanics.

Our small strain, affine, stretching deformations versus large
strain, non-affine, bending deformations should be contrasted
with earlier modeling of fiber networks. These earlier small
strain studies demonstrate a change from affine, stretching
dominated response to non-affine, bending dominated
response as the fiber network is diluted.20,38,39 A similar change
occurs by decreasing shear strain in substatic fiber networks,
yet the strains at which the change occurs are large.40 In this
work, we observe that a stretching-to-bending change can
be tuned by increasing the number of area-conserving loops.
However, since we have reported results in superstatic
networks, even in non-affine response, the energy is not domi-
nated by bending, but bending only becomes comparable to
stretching.
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Angle-constraining crosslinks

Before addressing the experimental data, let us briefly consider
another potential mechanism for compression stiffening,
namely angle-constraining crosslinkers. Having such cross-
linkers will, again, prevent the collapse of three springs into
one spring perpendicular to the compression axis because the
collapse is energetically unfavorable even in the absence of
organelles. The Hamiltonian of such a fiber network with angle-
constraining crosslinks is given by

Hfnþaxlinks ¼ Hoþfn þ
Kxlink

2

X

ijk¼
p
3

pijpjkðyijk ! p=3Þ2; (6)

with KA = 0. Here, Kxlink is the bending stiffness of the cross-
linker spring and p/3 is the rest angle of the spring since we
work on a triangular lattice. The response of such networks to
shear strain has been studied20–22 but not in response to
compression. This Hamiltonian corresponds to having non-
area conserving semiflexible polymer loops at the mesh scale of
the fiber network.

In response to compressive strain, even without any area-
conserving loops, this network compression stiffens as can be
inferred from Fig. 5. At small strain, the angles between fibers
change within each triangular loop with both stretching and
angle-constraining crosslinks dominating the response. At larger
strains, the affine stretching eventually compression softens while
the angle-constraining crosslinks become increasingly distorted
to compression stiffen. When Kxlink/Kcfl0

2 { 1, the stretching-
dominated compression softens wins. However, as the ratio
increases, eventually the bending-dominated compression stiffen-
ing wins. Note that bending along fibers does not play much of a
role here. See Fig. 15.

We also explore the fiber network mechanics for different
occupation probabilities with Kxlink/(Kcfl0

2) closer to unity. Note
that we can explore a larger range of occupation probabilities
than with freely-rotating crosslinks because the p above which
the network is rigid is the connectivity percolation threshold for

the triangular lattice, i.e. pc ¼ 2 sin
p
18

! "
¼ 0:347.20 For a range

of p o 0.7, the network response is similar. However, for
p 4 0.7, we observe a plateau in the stress–strain response
occuring at intermediate strains. This plateau corresponds to a
global distortion of the lattice to weaken it. This phenomenon
may be related to a first-order transition in the collapse of the
network that was studied in ref. 35 and 36, though with
bending replacing stretching. When p = 1, there is a dramatic
increase followed by a sudden decrease in the stress–strain
relation at these intermediate strains.

V. Comparison with experiments
Our experiments demonstrate that mEF cells exhibit compres-
sion stiffening with gc E 20%. From the modeling side, we have
identified three possible routes to compression stiffening in
cells, namely, (i) a boundary actomyosin cortex enclosing a

viscous medium in the absence of a bulk spanning fiber network,
(ii) a bulk spanning fiber network with freely-rotating crosslinks
and interspersed with fluid-based organelles and vesicles, and
(iii) a bulk spanning fiber network with angle-constraining cross-
links. All three mechanisms produce a linear stress–strain relation
at small strains before compression stiffening at strains larger than
gc. For the bulk fiber network results, the compression stiffening
finding is robust when bending is comparable to stretching.

Which model is most relevant for the experiment at hand?
If there is no bulk, rigid cytoskeletal network in mEFs, then one
expects that the boundary cortex enclosing a viscous medium to
be the most relevant model, at least up to strains where the
nucleus is not in direct contact with the compression apparatus
since the nucleus is typically the stiffest organelle in the cell.41

This model is also consistent with studies of local and global

Fig. 5 Compression stiffening in networks with angle-constraining cross-
links. Area-conserving loops are absent in these networks. Top: Compres-
sion stiffening as a function of Kxlink/(Kcfl0

2) is shown for systems with
occupation probability p = 0.58. When the ratio is small, Hfn+axlinks reduces
to Ho+fn (with KA = 0) and compression softening is observed as expected.
The onset of nonlinearity is not tunable by this ratio. Bottom: With
Kxlink/(Kcfl0

2) = 0.1, compression stiffening for different occupation prob-
abilities p is shown. For both figures, the curves are averaged over
1000 runs on an 8 " 8 lattice with Kcfl0

2/Ksf = 1.
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cell stiffness using multiple methods that consistently show
apparent Young’s moduli of a few Pa in the cell interior but
moduli in the range of kPa at the cell cortex.42 If there is a bulk,
rigid cytoskeletal network, then one expects organelles and
vesicles embedded within a freely-rotating crosslinked fiber
network to be the most relevant. Angle-constraining crosslinks
can help amplify the effect. Since we do not know directly
whether or not there is a bulk, rigid cytoskeletal network, let us
assume there is not and explore what our two-dimensional
boundary cortex enclosing a viscous medium model can tell us
about our three-dimensional experiment.

Given the simpler two-dimensional modeling versus the
three-dimensional experiment, one does not necessarily antici-
pate quantitative agreement between the two. We now make a
case for the potential for quantitative comparison. Let us
assume that the presence of the compression apparatus breaks
the spherical-like symmetry of the cell and so it can be treated
as a collection of two-dimensional cross-sections with minimal
fluid flow between the cross-sections as the cell is compressed.
Then the actomyosin cortex is captured by a loop and the
volume conservation due to the viscous medium translates to
area conservation within each cross-section. In addition, energy
has the same units in any dimension, while stress does not.
More precisely, the difference between a two-dimensional
stress and a three-dimensional stress is simply a length factor.
Alternatively, we can rescale the experimental results by a
particular value to nondimensionalize the experimental results.

Should the presence of the compression apparatus not break
the spherical-like symmetry of the cell, if we consider the
actomyosin cortex as a discrete set of loops that are connected
together at various points to form a shell, then the compres-
sional stiffening would then be dominated by the loop that is
most likely to compression stiffen first. This argument, again,
points to our loop model as a potentially accurate description of
the mechanics, as long as the coupling between loops is weak.
Should the coupling between loops be strong, then a full three-
dimensional model consisting of multiple loops is needed.
Within a multiple loops framework, fluid flow amongst the
different loops (yet with overall volume conserved) results in a
change in the area of the loops. Since we do not yet know if
cross-sections of the cell change in area as compression occurs,
we cannot yet rule out the role of fluid flow within the cell.
Since we cannot rule out fluid flow, we can easily extend the
two-dimensional loop model with conserved area to a loop
model in which area is not-conserved by introducing a soft area
constraint to account for the possibility of a cross-section of the
cell changing area as it is compressed. See the Appendix A3 for
details.

If we model the actomyosin cortex as a discrete set of
multiple loops (spherical symmetry-breaking or not), there is
the potential for quantitative comparison between our modeling
and our experiments. We, therefore, present quantitative compar-
ison between the experiment (from Fig. 1) and the modeling (from
Fig. 3c) in Fig. 6 in which the area is conserved. After subtracting
the pre-stress from experimental data and using the same value to
nondimensionalize the stress, we plot both curves on the same plot

to obtain very reasonable agreement between the experiment and
the model with only one free parameter, ~k, that is somewhat
constrained by earlier experiments. With ~k ¼ 0:768, it is a regime
in which both stretching and bending energy contribute to the total
elastic energy of the cortex. Additionally, the ratio of bending
energy to total elastic energy decreases monotonically with strain
and the geometry of the cell is pill-shaped. The loop model with a
soft area constraint also fits well with the experimental curves (see
Appendix A3), which means we cannot rule out either approach
(area conserved or area not conserved) with the stress–strain
curve alone.

So while our boundary cortex enclosing a viscous medium
appears to be a reasonable model, at least up until approxi-
mately 35% compressive strain, the model begins to deviate
from the experiment slightly beyond 35% compressive strain.
What other effects are at play? Fibroblasts contain actin,
vimentin, microtubules as well as other cytoskeletal fibers
and they contain organelles such as the nucleus. With large
enough compression, the plates will encounter resistance from
the stiff cell nucleus. For instance, for a nucleus that is one-
quarter the volume of the cell, the strain at which the nucleus
begins to dominate would be around 75%. In addition, the
more compressed a cell is, the more likely the fiber network will
percolate across the cell at least in the direction perpendicular
to the compression. Therefore, one cannot necessarily rule out
the bulk fiber network interspersed with organelles model for
larger strains. Moreover, given that we observe compression
stiffening with angle-constraining crosslinkers even in the
absence of organelles, the presence of angle-constraining cross-
linkers, such as filamin A,43 only enhances such an effect.

At this point, we also cannot necessarily rule out any of the
compression stiffening mechanisms we have just presented.
Perhaps all are at play at some level when compressing various
cell types. However, we can more directly compare our fluid-
based organelles within a fiber network model if we compare to

Fig. 6 Comparison of the experimental Fig. 1 with a modeling curve from
Fig. 3c. We subtract the pre-stress from the experimental curve and
normalize the stress by the same value. Note that there is only one free
parameter in the modeling curve, ~k.
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a reconstituted network of dextran beads embedded within an
in vitro fibrous fibrin network with one modification to the
model.24 Since the dextran beads essentially act as rigid objects
even at 40% strain, we modify the model accordingly by assigning
the spring constant for the central-force springs surrounding any
area-conserving loops to be 100 times larger than Kcf to more
closely approximate the rigidity of the beads. We have also added
some small random variation in Kcf for the central-force springs not
surrounding a loop to more closely mimic the more generic
network structure of the experiment that is presumably not based
on an underlying lattice.

Is our fiber network with area-conserving loops model useful
for interpreting these experimental results? Recall that the
compression stiffening mechanism is robust when the stretching
of fibers is comparable to the bending of the fibers. Typically,
individual fibers such as actin and collagen are not in this regime,
though bundles of such fibers that can slide past each other may
be closer to this regime. However, fibrin is a fiber with extra-
ordinary extensibility and elasticity44,45 making it a more likely
candidate to be in such a regime. Fig. 7 is a dimensionless
presentation of the data in Fig. 2 and demonstrates the compar-
ison between the modeling and the experiment. Both experimental
curves have been rescaled by 2.93 Pascals so that there would be
one common data point between the modeling curves and the
experimental curves at a strain of 10%. As with the cell, if uniaxial
compression of the initially isotropic system allows one to consider
the composite system in terms of two-dimensional cross-sections,
then our modeling is quantitatively applicable. Let us assume so
given our cell results and discuss the comparison.

Both the experiment and the model do not exhibit compres-
sion stiffening in the absence of beads/area-conserving loops.
In the experiment with beads, compression stiffening occurs

around 30% strain and then by 40% strain, the stress has
increased about four-fold. In the model with 14% packing
percentage of more rigid area-conserving loops, the onset of
compression stiffening occurs around 42% strain with a four-
fold increase in stress by around 50% strain. This range can be
modified by changing the spring constant stiffness of the
central-force springs surrounding the area-conserving loop.

So the most significant difference is the gc in the experiment
and the model. This difference may be due to a difference in
length scales. In the experiment, the bead diameter is much
larger than the mesh size, while in the model, the two length
scales are the same. We expect more localized bending with
smaller loops and less localized bending around bigger loops
with both effects leading to compression stiffening, though
how gc is affected is not immediately clear. This expectation can
be numerically tested by exploring larger loops embedded in
larger lattices. There is an additional computational issue. With
more rigid loops, they are more likely to overlap given their lack
of deformability as the compression occurs, even in a nearly
fully occupied triangular lattice. This overlap induces an
unphysical softening in the model. One can ameliorate this
issue with vertex and edge annihilation and edge reassignment
and would presumably shift the model’s gc to be more in line
with the experiments.

What else can we say about the experimental results given
the lessons we have learned from the modeling? Since the loops
do not move relative to the fiber network, our modeling is
applicable to adherent beads. If we were to consider non-
adherent beads, however, then the fibers can move relative to
the beads and collect in the interstitial places between the
beads such that the beads become effectively larger and so
percolate transversely to the compression at a smaller packing
fraction than random-close packing26 and perhaps even random-
loose packing25 given the uniaxial compression. In other words,
if there is enough space for the fibers to move so that they do not
have to bend around the beads, then there will be no compression
stiffening. It is interesting to note that with inert beads, the
compression stiffening does not occur until a packing percen-
tage of around 60%,24 which is rather different from the
nonadherent case discussed above. Interestingly, a different
mechanism for compression stiffening that does not require
bending but does involve a percolation of the area-conserving
loops is possible (see Appendix B). The loops need not be rigid
to drive the stiffening.

To further test the notion of the bending of fibers as the
driving compression stiffening mechanism, we replace fibrin
with 2.4% PAA gel, where bending is negligible. Here we do not
observe compression stiffening even with 60% dextran beads.
See Fig. 17. In fact, there may be a slight compression softening
starting to occur around 20% compressive strain. This supports
our finding that in the absence of bending, compression soft-
ening occurs due to the alignment of springs. For large enough
strains however, we expect that the beads, held in place by the
fiber network, eventually percolate transversely to the compres-
sion axis to lead to compression stiffening even in the absence
of bending, as mentioned above.

Fig. 7 Comparison of experimental Fig. 2 with a version of Fig. 4c. The
experimental curves are normalized axial stress versus axial compressive
strain for the in vitro fibrin network with and without beads embedded. The
modeling curves are for fiber networks with and without rigid area-
conserving loops embedded. For the fiber network with no loops, the
analytical curve for a central force spring with initial orientation of angle
p/2.2 with respect to transverse axis of compression is chosen, see Fig. 13.
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VI. Discussion
For decades cells have been stretched, sheared, and compressed
to understand their mechanics. We present a direct measurement
of the compressive stress of a mouse embryonic fibroblastas as a
function of compressive uniaxial strain imposed at the cell
lengthscale and observe the nonlinear phenomenon of compres-
sion stiffening. The compression stiffening occurs around a
compressive strain of 20%. The implications of this finding are
relevant at the cell scale and, potentially, at the tissue scale. At the
cell scale, we already know that cells stiffen when stretched and
exhibit other nontrivial rheology.46 Our compression stiffening
result demonstrates that cells can behave nonlinearly under
compression as well even on fast time scales where cytoskeletal
reorganization is not feasible. Such behavior may indeed be
important for cells in environments with intermediate to large
homeostatic pressures.

To interpret our compression stiffening finding at the cell
scale, we study several different models. First, we consider the
cell as a viscous medium modeled as an incompressible fluid
surrounded by an actomyosin cortex modeled as a semiflexible
loop and find compression stiffening. This model does not
account for any fibers in the bulk of the cell, however, and
a system-spanning bulk, rigid cytoskeletal fiber network
would indeed contribute to a cell’s mechanics. Since in vitro
cytoskeletal filament networks compression soften, we have
constructed a fiber network with fluid-based organelles and
vesicles modeled as area-conserving loops randomly inter-
spersed throughout the fiber network. In the absence of any
area-conserving loops, we find that the fiber network indeed
compression softens due to the alignment of fibers along the
axis perpendicular to the uniaxial compressive strain. This new
mechanism for compression softening is more collective than
individual fiber buckling and demonstrates that softening can
occur even in the absence of buckling. In the presence of area-
conserving loops, we find that the network compression stif-
fens even for small packing fractions. Not only do the area-
conserving loops prevent the alignment of the fibers, they also
promote the bending of the fibers to contort around them.
A third mechanism for compression stiffening is due to angle-
constraining crosslinks in the fiber network. As the fiber
network becomes increasingly compressed, the angles between
fibers must distort resulting in an increasing stress in the
network. For this third mechanism, no area-conservation is
required.

Of the three models, the one that best fits the data at least
for up to 35% compressive strain is the cell as a viscous
medium enclosed by an actomyosin cortex. This model con-
tains only one free parameter and suggests that the cortex of
the three-dimensional cell subject to uniaxial compression can
be viewed of as a set of loops forming a shell. While interac-
tions between the loops presumably exist, such interactions do
not perhaps dominate the mechanics given our theoretical-
experimental comparison using a single loop. In addition, the
bulk fiber network may be at play at larger strains and so we
cannot rule out the fiber network modeling results. On the

other hand, our freely-rotating crosslinked fiber network inter-
spersed with area-conserving loops model can be more directly
tested against in vitro fibrin networks embedded with dextran
beads. Even with only 14% packing percentage of beads, the
fibrin network compression stiffens. Since the dextran beads
are essentially rigid in the experiment, we rigidify the area-
conserving loops by dramatically increasing the stiffness of the
central-force springs surrounding the loops. While we find
somewhat good agreement in the magnitude of the stress
increase for a given strain range in the compression stiffening
regime, the gc is approximately 30% for the experiment and just
above 40% in the modeling. We have made several speculations
as to the difference in values between the experiment and the
model bearing in mind that there already exists phenomeno-
logical modeling that does agree well the experimental data.24

Our purpose here is to work with a more microscopic model
with which we extract a new mechanism for the compression
stiffening in terms of fiber bending. Interestingly, our results
suggest that compression stiffening is robust for fiber networks
in which the stretching energy of the filaments is comparable to
the bending energy of filaments. This property is not applicable
to actin crosslinked with, for example, fascin5 or to PAA gels as
evidenced by the lack of compression stiffening in such gels
even with a high fraction of beads. This regime may be more
accessible, however, with intermediate filaments such as
vimentin and keratin.47

Our modeling also sheds light on the significant variation of
cell stiffness measurements among different experimental
techniques and the choice of cell line.42,48 If there is no
spanning cytoskeletal network, then the moduli can be much
lower than if there is a spanning cytoskeletal network present
given the difference in changes in stress scale between the
cortex surrounding a viscous medium model versus the fiber
network with organelles model. Should the experimental
method be more likely to probe the boundary of a cell as
compared to its bulk, then different measurements may indeed
be observed. Moreover, we find that the stress–strain curves are
not only sensitive to boundary versus bulk measurements but,
for the freely-rotating fiber network model, to the packing
fraction and size distribution of area-conserving loops. Such
stress–strain curves could, therefore, provide a mechanical
fingerprint to the size distribution of organelles in a cell.
Different cell-types have different size distributions and so
one could distinguish between, say, an epithelial cell and a
fibroblast given the stress–strain curve, in principle. As noted
earlier, the compression of T-cells yields a cubic force-strain
relationship up to strains about 30%.28 As long as the force is
proportional to the stress, our boundary cortex model in the
limit of no-bending is relevant. T-cells have unusually large
nuclei. Can we say something fundamental about the size of
organelles such as the nucleus with respect to the size of the
cell given our insights that go beyond the insights provided by
Feric and Brangwynne for very large nuclei?49 For cells to
exhibit larger compressive stresses, the presence of a bulk
spanning fiber network is helpful. Perhaps for more migratory
cells, the presence of a bulk spanning fiber network may hinder
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mobility in, say, confined environments. Recent experiments
find that vimentin-null mEFs migrate faster in microchannels
then their wild-type counterparts.50

Now that we know individual cells compression stiffen, how
do such nonlinear entities act when together in a compressed
tissue? As stated in the introduction, one cannot directly imply
that compression stiffening of tissues is caused by the com-
pression stiffening of cells. Since, when we move across length
scales, emergent phenomenon at a larger scale can exhibit
behaviour otherwise unexpected from its constituents at a smaller
scale. Yet, given that liver tissues almost completely lose their
compression stiffening behaviour with decellularization,2 it is
plausible that one of the reasons of compression stiffening of
tissues is indeed the compression stiffening of the individual
building blocks. While phenomenological models2 and classical
elasticity models3 approach compression stiffening directly from
the tissue scale, our results here suggest that one can probe the
tissue at smaller and smaller lengthscales to presumably find
robustness of compression stiffening. At such scales, continuum
mechanics may not be relevant, particularly for either extracellular
matrix fibers and/or for cytoskeletal fibers. Tissue lacking in
extracellular matrix is only as strong as its intercellular contacts.
While biology has presumably developed ways for cell–cell adhe-
sion to depend on the nonlinearity of the cell’s mechanics, an
obvious answer presented here is to make a tissue composite
where the area-conserving loops (or shells in three-dimensions)
are now cells and the fibers are made of collagen. Given the ratio
of stretching to bending moduli of individual collagen fibers,51 a
bundled network and/or one with angle-constraining crosslinks,
will exhibit compression stiffening. Cells can also remodel the
extracellular matrix on long enough time scales to make it more
heterogeneous thereby adding to the complexity of the composite
material. Indeed, biology has already mastered the highly non-
trivial mechanics of compositeness in ways that we are just
beginning to understand.

Conflicts of interest
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Appendix A: cell as a viscous medium
surrounded by a cortex
1. Compressing a 4-gon

We assume the simplest loop symmetric about the x-axis and
y-axis, a 4-gon that will be vertically and uniaxially compressed.
We choose the arms of the loop to be oblique to the vertical
compression rather than to have the arms perfectly parallel to
the direction of compression. The latter configuration has the
peculiarity that the x degrees of freedom do not couple with the
y degrees of freedom when compressed which makes it a non-
generic shape. The loop (see Fig. 8) is assumed to be a square at
zero strain and a rhombus (all sides equal) at finite strain.

The central force energy, Ho+c,cf is,

Hoþc;cf ¼ 4
Kcf

2
l ! 1ffiffiffi

2
p

$ %2

¼ 2Kcf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

2

! "2
þ y

2

! "2
r

! 1ffiffiffi
2
p

( )2

;

(A1)

where the rest length of the springs is chosen to be 1=
ffiffiffi
2
p

. Since
the 4-gon is compressed along the y-axis, we define y = 1 ! e
with compressive strain g = e/y0. The area of the square is 1/2.
Since area is conserved during compression,

4
1

2

x

2

! " y

2

! "
¼ 1=2;

we have,

x ¼ 1

y
: (A2)

Substituting eqn (A2) in eqn (A1),

Hoþc;cf ¼ 2Kcf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2y

$ %2

þ y

2

! "2
s

! 1ffiffiffi
2
p

8
<

:

9
=

;

2

¼ Kcf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð1! eÞ2 þ ð1! eÞ2
s

!
ffiffiffi
2
p

( )

;

where e is substituted for y. The low strain expansion of this
energy is,

Ho+c,cf = 2Kcf(e4 + 2e5 + . . .), (A3)

with e p g and implying compression stiffening.
With Ksf 4 0, a similar calculation can be done with the

angular springs to get an expression for the angular spring
energy Ho+c,sf,

Hoþc;sf ¼ 8Ksf e2 þ e3 ! 10

3
e4 þ . . .

$ %
(A4)

This latter result gives a quadratic strain term in contrast to the
quartic strain term for central-force springs only.

2. An ellipse in the continuum limit

When the number of vertices in the loop is large and ~ko 1,
then numerical minimization yields elliptical shapes with
compressive strain. The continuum limit loop is then assumed
to be a circle at zero strain and an ellipse at finite strain. For
analytical simplicity, a global stretching energy term is used in

Fig. 8 A rhombus 4-gon compressed along the vertical y-axis.
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contrast to a series of individual central force springs in
eqn (A1). It is seen however that the form of the series expan-
sion of stretching energy is unaffected by this choice (compare
eqn (A3) and (A10)). We have,

Hoþc;cf ¼
1

2
Kcfðl ! l0Þ2: (A5)

An ellipse is defined by two parameters – the semi-major and
semi-minor axis which are denoted by a and b. The two
constraints – the distance between the top and bottom com-
pression walls and the constant area constraint fixes the two
parameters of the ellipse,

b ¼ 1! e

pab ¼ pr02;
(A6)

where ro = 1 is the initial state of the loop at zero strain. These
constraints reduce the parameters to functions of strain e as,

aðeÞ ¼ 1

1! e

bðeÞ ¼ 1! e:
(A7)

The circumference l of an ellipse does not have an exact
expression and is expressed as the complete elliptic integral
of the second kind,

4a

ðp=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! e2 sin2 y

p
dy; (A8)

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! b2=a2

p
is the eccentricity of the ellipse. Rama-

nujan’s approximation to l is,

l ' pðaþ bÞ 1þ 3l
10þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4! 3l
p

$ %
; (A9)

where l = (a ! b)/(a + b). This approximation is good up to
O(l10).52

Since a, b, l are all expressed as functions of strain e, l, the
stretching energy in eqn (A5) consequently becomes a function
of e. The exact expression being dense, a series expansion about
zero strain is reproduced here instead,

Hoþc;cf

9p2
' Kcf

e4

4
þ e5

2
þ 23e6

32
þ . . .

$ %
(A10)

The lowest order term is seen to be quartic just as the stretching
energy expression for the discrete loop calculation (eqn (A3)).

Now, we analyze the bending contribution with,

Hoþc;sf ¼
k
2

ðl

0
ds

dt̂

ds

''''

''''
2

: (A11)

The normal and tangent vector at a point on the ellipse,
parameterized by y is,

~n ¼ ða cosðyÞ; b sinðyÞÞ

~t ¼ ð!b sinðyÞ; a cosðyÞÞ:
(A12)

It can be verified that ~n )~t ¼ 0. The unit tangent vector t̂ is
defined as,

t̂ ¼
~t

rðyÞ; (A13)

where r(y) is,

rðyÞ ¼ ða2 cos2ðyÞ þ b2 sin2ðyÞÞ
1
2: (A14)

The contour derivative of the unit tangent vector can be
expressed in terms of the parameter y as,

dt̂

ds
¼ 1

rðyÞ
dt̂

dy
: (A15)

eqn (A11) can now be presented as,

Hoþc;sf ¼
k
2

ð2p

0

dy
rðyÞ

d

dy
ð!b sinðyÞ; a cosðyÞÞ

r

''''

''''
2

: (A16)

Having a,b as functions of e, (see eqn (A7)), a series expansion
of the energy about strain e can be performed. Subsequent
integration over y gives,

Hoþc;sf

p
' k 1þ 15

4
e2 þ 15

4
e3 þ 405

64
eþ . . .

$ %
(A17)

The form of energy for is again similar to the discrete loop
calculation (eqn (A4)). Even though a circle minimizes the
bending energy53 in eqn (A11), it doesn’t have zero energy.
Thus, we have a constant term here, independent of strain in
the energy expansion.

3. Soft area constraint

We now study the effect of replacing the Lagrange multiplier
term in eqn (1) with a soft area constraint, i.e. kA(A ! A0)2.
For small enough KA, the area of the semiflexible polymer
loop can change and so we ask whether or not compression
stiffening will be observed. For large enough values of KA, we
still observe compression stiffening despite changes in area.
See Fig. 9. As discussed in the text, the change in area
represents fluid flow from one region of the cell to another.
We obtain good agreement with the experimental data with the
soft area constraint, suggesting that neither approach, the
Lagrange multiplier nor the soft area constraint can yet be
ruled out. Note that ~k changes modestly from one approach to
the other for the experimental comparison. Finally, the onset of
compression stiffening becomes increasingly delayed as KA

goes to zero.

Appendix B: cell as a collection of
organelles within a fiber network
1. No organelles: compression softening

We first present an approximate calculation for the com-
pression softening mechanism in the absence of organelles
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(area-conserving loops). The energy of a single central force
spring is

E ¼ Kcf

2
ðl ! l0Þ2: (B1)

Its differential is

DE = Kcf(l ! lo)Dl. (B2)

From geometry (see Fig. 10),

l2 = x2 + y2

) lDl E yDy

) lDl E l sin(y)Dy.

Assuming Dx E 0,

Dl E sin(y)Dy. (B3)

Substituting the same in eqn (B2), we obtain

DE E Kcf(l ! lo)sin(y)DY

DE
DY
' Kcf ðl ! loÞ sinðyÞ:

Since Dy is nothing but the strain imposed, using the definition
of stress s in eqn (2),

s p sin(y). (B4)

As y decreases for affine response under compression, stress
too decreases.

We now present a more detailed calculation that makes an
exact fit with the numerical results. For an affine deformation,
angular springs do not contribute to the elastic energy since
straight lines remain straight lines and do not bend. The energy
of the system is then the energy of the central force springs in
the hexagon (see Fig. 10),

Eoðx; yÞ * 4
1

2
ð2x! 1Þ2

$ %
þ 8

1

2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
! 1Þ2

$ %
: (B5)

The equilibrium lengths of the springs are of unit length. The
integer coefficients for the terms are the number of springs
that are horizontal and diagonal respectively. For a given
compressive strain, the vertical degree of freedom – y is fixed.
E0 is minimized over the horizontal degree of freedom
– x for every y using Mathematica. This results in the elastic
energy E0(y) which is now a function of y. The stress is
evaluated by taking a derivative with strain to arrive at the
plot in Fig. 4b.

2. Area-conserving loops initiate bending

Consider the forces acting on vertex C (see Fig. 11a) in the
vertical direction. The summation of the forces must add up to
zero to ensure mechanical equilibrium of this vertex. Let us
assume that the loop conserves its area by conserving the
lengths of each of its side. This implies that the central force
springs around the area-conserving loop remain inactive and
do not impose any force on vertex C. The central force springs
directly below the vertex, being compressed, push upward on
the vertex. The horizontal springs pull the vertex horizontally as
a consequence of Poisson’s effect. To balance the upward force
on the vertex, the horizontal springs need to bend towards each
other. The vertical components of

-

F2 would then balance the
vertical components of

-

F1.
When area-conserving loops are embedded in the network,

the network deforms in a non-affine manner. This calculation

Fig. 10 Collapse of springs induces softening.

Fig. 9 A cell as a viscous interior surrounded by an actomyosin cortex
with a soft area constraint. (a) Plot of the normalized stress versus strain
curve from the experiments and the resulting fit. (b) Plot of the corres-
ponding fractional change in area as a function of the compressive strain in
the model.
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describes the non-affinity when the said inclusions percolate in
the network. The non-affinity in the horizontal degrees of
freedom is considered but not the vertical which is an equally
important factor to consider. Considering just the energy of the
central force springs in the hexagon (see Fig. 12a),

E2ðx;w; yÞ * 2
1

2
ð2x! 1Þ2

$ %
þ 2

1

2
ð2w! 1Þ2

$ %

þ 4
1

2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
! 1Þ2

$ %

þ 4
1

2
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ y2

p
! 1Þ2

$ %
:

(B6)

The non-affinity in the horizontal degrees of freedom of the
system is captured by assigning two independent variables x,w.
This energy function has an additional variable calling for an
additional constraint to fix its value, which is provided by the area-

conserving constraint of the loops, or
1

2
2xy ¼ 1

2
" 1" sinðp=3Þ.

The area of the loop at every strain is fixed by the area of the loop
at zero strain. With this E2 can be reduced to a function of x, y.

The rest of the procedure to obtain stress curves is the same as in
the no organelle/loop case. Also note that with this geometry
the area-conserving loops percolate between the upper and
lower plates of the system at the outset, which constrains the
deformation of the loops. This is yet another compression
stiffening mechanism that occurs even in the absence of
bending and could be very relevant for the reconstituted fibrin
network experiments.

While the above calculations are representative of the
ordered fiber network (p = 1), we also present some additional
numerical results for p o 1 without and with semiflexibility
and in the presence of area-conserving loops. See Fig. 14.
We have also checked that the compressional stiffening persists

Fig. 11 Area conserving loop in a semiflexible polymer network. (a) Area conserving loop initiates bending (see Appendix B.2). (b and c) Stress
contributed by central force and angular springs respectively, for various packing fractions on a 12 " 12 lattice with Kcfl0

2/Ksf = 1.

Fig. 12 A minimal analytical calculation of an alternate mechanism for
compression stiffening which involves a percolation of area-conserving
loops and does not require bending. (a) Schematic (see Appendix (B.2)).
(b) Comparison of analytical calculations with and without loops (see
Appendix A.1 and B.2).

Fig. 13 Compression softening is generic to choice of spring orientation
in network. We study a triangular lattice where the diagonal central force
springs make an angle of p/3 with the transverse axis of compression.
Compression softening however is generic non-linear behavior of a
central force spring and is seen for all choices of initial orientations of
springs with the exception of p/2 orientation; here the compression being
along the axis of the spring, a linear behaviour is observed. In calculating
the curves, we have followed the procedure laid out in the first part of
Appendix B.1. Stress has been normalized so that the curves overlap at
small strain.
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in both larger and smaller systems and it does with the
magnitude of the stress converging as the system size increases
and gc shifting as well with system size. See Fig. 16.

For the angle-constraining crosslinked fiber network, we present
a figure (Fig. 15) that shows the different energy contributions for
each type of spring. Note that the angular springs along the fibers
modeling the semiflexibility do not account for much of the energy
even at large compressive strains.

3. Experiment with polyacrylamide gel

To study the effect of bending in the fiber network on compres-
sion stiffening, we study beads embedded in a polyacrylamide
(PAA) gel, which is a linear elastic material. The experimental
protocol is the following: 8% acrylamide and 0.3% bis-acrylamide

cross-linker (BioRad, Hercules, CA) was mixed with 10% ammo-
nium persulfate and TEMED to initiate polymerization,
after which it was quickly mixed with pre-swollen G-25 dextran
beads and water to produce a network with 2.4% acrylamide,
0.09% bis-acrylamide, 0.2% APS, 0.3% TEMED, and 40%, 50%,
or 60% beads. Then, 1 or 2 mm thickness samples were
incubated in a non-adhesive container at room temperature
for 45 minutes. After full polymerization, samples were cut
to size, transferred to the rheometer plates and surrounded
by water.

We present data for a 2.4% PAA gel with 60% dextran beads
and do not find evidence for compression stiffening. See
Fig. 17.

Fig. 14 Compression softening observed for occupation probabilities p o 1. The curves are averaged over 100 runs on an 8 " 8 lattice obeying the
Hamiltonian Ho+fn with KAl0

2/Kcf = 0. (a) Here, Kcfl0
2/Ksf = 0. (b) Here, Kcfl0

2/Ksf = 1.

Fig. 15 Energetic contributions for angle-constraining crosslink fiber
network. The energy is governed by Hfn+axlinks with p = 0.58, Kcfl0

2/
Ksf = 1, and Ksf/Kxlink = 10. The curves are averaged over 100 such initial
configurations.

Fig. 16 Finite-size effects for fiber network with area-conserving loops.
The energy is governed by Ho+fn and the packing fraction of the area-
conserving loops are kept constant at f = 0.06 across the lattices.
Occupation probability p = 1 and Kcfl0

2/Ksf = 1. The position of the loops
being random, the curves are averaged over 100 such initial
configurations.
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