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Compression stiffening in biological tissues: On the possibility of classic elasticity origins
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Compression stiffening, or an increase in shear modulus with increasing compressive strain, has been
observed in recent rheometry experiments on brain, liver, and fat tissues. Here we extend the known types
of biomaterials exhibiting this phenomenon to include agarose gel and fruit flesh. The data reveal a linear
relationship between shear storage modulus and uniaxial prestress, even up to 40% strain in some cases. We
focus on this less-familiar linear relationship to show that two different results from classic elasticity theory can
account for the phenomenon of linear compression stiffening. One result is due to Barron and Klein, extended
here to the relevant geometry and prestresses; the other is due to Birch. For incompressible materials, there are
no adjustable parameters in either theory. Which one applies to a given situation is a matter of reference state,
suggesting that the reference state is determined by the tendency of the material to develop, or not develop, axial
stress (in excess of the applied prestress) when subjected to torsion at constant axial strain. Our experiments
and analysis also strengthen the notion that seemingly distinct animal and plant tissues can have mechanically
similar behavior at the quantitative level under certain conditions.
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I. INTRODUCTION

The effect of prestress on a biological tissue’s elastic mod-
uli and related sound velocities, etc., is an interesting question,
given that a living tissue confined in volume generically
develops prestress in the form of homeostatic pressure. This
condition is characterized by a steady state of cell division and
death processes [1]. For vascularized tissue, an upper limit on
homeostatic pressure is set by the ∼10-kPa blood pressure.
Ex vivo shear stiffness of mammalian brain matter is ∼1 kPa
for comparison [2,3]. One might naturally ask how, or
whether, the latter value would be different in the case of
living or otherwise prestressed tissue. Very recent results us-
ing magnetic resonance elastography indicate the shear mod-
ulus of living brain tissue increases linearly with intracranial
(homeostatic) pressure [4].

A series of recent parallel-plate rheometry experiments
have explored prestress effects in animal tissue and biopoly-
mer network samples of characteristic size ∼1 cm by sub-
jecting them to a combination of static axial compression and
∼1-Hz torsional oscillations [5–10]. To avoid slippage during
torsion, and also to facilitate axial tension, adhesive contact is
typically made between the rheometer plates and the ends of
the cylindrical sample [11]. It has been pointed out that such
adhesive boundary conditions effectively constrain the lateral
dimensions of a sufficiently thin sample, resulting in a volume
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change when axial force is applied [8,9]. In this thin-film limit,
one expects stresses within a fluid-containing tissue sample
are redistributed into a state of near hydrostatic pressure.
Thus, by adjusting the sample geometry and/or boundary
conditions, parallel-plate rheometers provide a convenient
way to measure the effect of various states of prestress on the
shear storage and loss moduli of tissues.

These recent experiments have studied, in particular, the
shear response of brain tissue (both normal and that isolated
from human glioma tumors), as a function of prestress levels
expected in vivo from homeostatic pressure considerations, as
well as increased vascularization of the tumors [5]. Similar
measurements were also carried out on liver tissue (both nor-
mal and that affected by fibrosis) [6]. In all four of these cases,
shear storage modulus is reported to increase with applied
uniaxial compression. The authors refer to this phenomenon
as compression stiffening. Interestingly, when essentially the
same experiment is done with the biopolymer network ma-
terials collagen and fibrin (major components of the extra-
cellular matrix), the opposite effect is found: Shear stor-
age modulus decreases with uniaxial compression, otherwise
known as compression softening, but increases with extension
[7,8].

One potentially unifying feature of the diffferent tissue
results, however, is an observed linear relationship between
shear storage modulus and uniaxial prestress [6,8]. This spe-
cific linear relationship has yet to be a focus of modelers. And
yet it is this very relationship that clues us in on several poten-
tial new mechanisms for compressional stiffening depending
on the slope, as we will detail below. And while some of the
deformations involved in these experiments are typically what
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one would consider to be well outside the regime of linear
elasticity—on the order of 40% strain or more—the compres-
sion stiffening behavior also shows up in (and is qualitatively
similar in) the small deformation regime where strains are less
than ∼10%. This point is not addressed in prior theoretical
work, which focuses on explaining compression stiffening
from within the framework of hyperelastic models, such as
Ogden models, presumably because such models are the most
realistic ones available for capturing biomaterials undergoing
physiologically relevant deformations [6,10]. However, such
models contain multiple parameters that may be difficult to
relate to any specific structure or signature.

Here we take the “minimal modeling” approach of trying to
gain a theoretical understanding of compression stiffening at
small strains and then test how well this linear approach does
(or does not) reproduce experimental data at larger strains,
fully aware that in doing so we are pushing the limits of
the theory’s validity. Nevertheless, our results suggest that
the essential physics of compression stiffening is captured by
linear elasticity theory; higher-order corrections are clearly
needed at larger deformations. Thus, our interpretation of the
leading-order compression stiffening mechanism is extremely
simple and relies on no hyperelastic fitting parameters. We
demonstrate the predictive power and universality of our ap-
proach by showing that it agrees with data from five different
classes of biomaterials, including animal tissue (previously
published in Refs. [5,6,10]), as well as some plant tissue and
agarose gel samples, newly reported here.

That plant tissue should behave similarly to animal tissue
in these prestressed rheometry experiments is not immediately
obvious, given that plant cells contain cell walls, vacuoles,
and chloroplasts, which animal cells do not. Plant cell walls
allow the cells to withstand turgor pressures on the scale
of megapascals [12] and presumably result in plant tissue
typically having larger storage moduli than animal tissue at
the many-cell scale. While plant tissue has long been modeled
as an elastic solid [13] as has animal tissue, it is interesting to
quantitatively compare the two at both small and large strain.

To provide an interpretation for the observed compres-
sional stiffening, we point out a subtlety concerning the mea-
surement of elastic constants of a material under prestress and
argue that certain instances of linear compression stiffening
can be explained by properly accounting for prestress in the
rheometry experiments. The theory involved was developed in
the context of condensed matter at high pressure [14] and has
not commonly been applied to soft matter at physiologically
relevant pressures. While prestresses in soft matter systems
may be small in absolute terms, they can be large in compari-
son to the elastic moduli, as already mentioned. Our prestress
calculation emphasizes the role of boundary conditions in de-
termining whether the applied uniaxial stress remains uniaxial
within the sample or is redistributed into an isotropic stress.
Meanwhile, other instances of linear compression stiffening
are not readily explained by the prestress theory. Instead,
they are consistent with a conceptually different theory in
which hydrostatic compression and shear are superposed on a
zero-stress reference state. Thus the present work argues that
both theories are applicable to linear compression stiffening;
which one works in a given situation depends on the nature of
the reference state.

II. EXPERIMENTS: MATERIALS AND METHODS

A. Animal tissue samples

The dependence of shear modulus on compressive strain
has previously been reported for mouse brain [5], liver [6],
and fat [10], as has the relation between axial stress and axial
strain. Here we replot these data to show shear modulus as a
function of axial stress. Details of the sample preparation and
rheological methods are provided in Refs. [5,6,10]. Briefly,
animal tissues were cut into disk-shaped samples using an
8-mm-diameter stainless steel punch. Fibrin gel, with a shear
modulus greater than that of the tissues, was used to glue the
sample to the rheometer plate, and a normal force of 1 g was
applied to ensure contact between the top of the sample and
the upper plate. This state was assumed to approximate the
zero stress state. The shear modulus of the samples was mea-
sured on a strain-controlled Rheometrics fluids spectrometer
III (Rheometrics, Piscataway, NJ), which can also measure
normal forces simultaneously with torque. Axial strain was
applied by changing the distance between the parallel plates,
and the resulting axial stress was measured 30 s after changing
the gap.

B. Mango samples

Mango fruit flesh was obtained from a ripe mango. Sam-
ples were cut into 10-mm-high and 20-mm-wide disks, with
the long axis parallel to the seed orientation, using a 20-mm
tissue punch. All samples were from the same fruit. The shear
elastic and viscous modulus of mango flesh was measured
using a Malvern Kinexus laboratory+ rheometer and rSpace
software (Westborough, MA) using a 20-mm parallel plate
geometry. Because mango is slippery, 20-mm sandpaper disks
were used to ensure contact between the plates and the sample.
Shear modulus was measured at 1 rad/s and 5% oscillatory
strain. Triplet mango samples were measured under increasing
compression, to 20% of the original sample height, in steps of
4% each.

C. Agarose gel samples

The 2% agarose solution was prepared by dispersing the
appropriate amount of polymer in distilled water at 100◦C,
while stirring until complete dissolution. Agarose gels were
prepared by pouring the above solution into a mold and
allowing the gelation for 24 h at room temperature. Samples
were cut from one big chunk into 9.5-, 3.8-, and 1.8-mm-
high and 20-mm-wide disks using a 20-mm-tissue punch.
Rheology measurements were performed using a Malvern
Kinexus laboratory+ rheometer with a 20-mm parallel plate
geometry. Shear modulus measurements were carried out at
a frequency of 1 Hz, shear strain amplitude of 2%, and axial
compressive strain increasing in steps of 5% up to maximum
value 25%.

III. BARRON-KLEIN APPROACH AND
PARALLEL PLATE RHEOMETRY

A. Background

A 1965 paper by Barron and Klein (hereafter BK1) treats
rigorously the problem of calculating elastic constants of
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a solid under prestress [15]. Taylor expanding the energy
density around the prestressed reference configuration yields

�U

V
= Si jui j + 1

2
Qi jkl ui jukl + . . . , (1)

where ui j is the combined deformation due to the prestress Si j

and any other stresses subsequently applied to the reference
state. In general, this deformation consists of a symmetric part
ei j and an antisymmetric part wi j , i.e., ui j = ei j + wi j . The
key point (made 15 years prior to BK1) is that the presence
of the linear term modifies the symmetry properties of the
coefficients Qi jkl from those of the usual rank-four elastic
modulus tensor [16]. In particular, invariance of the energy
density under a rigid rotation requires that

Qi jkl − Qjikl = S jlδik − Silδ jk, (2)

Qi jkl − Qi jlk = S jlδik − S jkδil , (3)

Qi jkl − Qjilk = S jlδik − Sikδ jl , (4)

where the δ’s are Kronecker deltas. However, BK1 shows that
there is a tensor ci jkl that, in the special case of isotropic
prestress Si j = −Pδi j , where P is pressure, inherits all the
symmetries of the usual elastic modulus tensor and enters
the stress-strain relationship and equation of motion in the
usual way. (Homogeneous deformation is assumed in their
analysis.) The cost of this finite pressure generalization of
the zero-stress elastic constants is that ci jkl is equal to the
conventional second derivative of energy density with respect
to strain plus an additional “pressure correction” term, or

ci jkl = 1

V

∂2U

∂ei j∂ekl
+ P

2
(2δi jδkl − δilδ jk − δikδ jl ). (5)

To investigate the potential application of the BK1 approach to
the compressional stiffening experiments reported here and in
earlier experiments, we must consider the same deformations
as in the experiments. In doing so, we study both isotropic pre-
stress and anisotropic prestress. For the anisotropic prestress,
we extend the BK1 approach.

B. Torsion with isotropic prestress

Torsional deformation of a cylinder whose axis is situated
at x = y = 0 is equivalent to a symmetric strain

⎛
⎝

exx exy exz

eyx eyy eyz

ezx ezy ezz

⎞
⎠ = γ (R)

2R

⎛
⎝

0 0 −y
0 0 x

−y x 0

⎞
⎠, (6)

plus a rotation
⎛
⎝

wxx wxy wxz

wyx wyy wyz

wzx wzy wzz

⎞
⎠ = γ (R)

2R

⎛
⎝

0 −2z −y
2z 0 x
y −x 0

⎞
⎠. (7)

Here γ (r) = rφ/L is the “torsional strain” which has maxi-
mum value at r = R (the cylinder radius), L is the cylinder
length, and φ is the angle of twist of one cylinder end with
respect to the other [see Fig. 1(a)]. In order to apply

(a) (b)

(c) (d)

R

L

Faxial

(e) (f)

FIG. 1. (a) Schematic of rheometry experiment. In the limit L �
R and for adhesive boundary conditions, axial compression induces
a volume change ∼πR2�L [8,9]. Outside this limit, the sample is
free to bulge laterally, away from a cylindrical geometry [6], and
any volume change associated with the compression is � πR2�L.
Torsion measurements were carried out at fixed axial strain �L/L,
generating axial stress deviations δσ from the zero torsion prestress
σ , but these were typically small, i.e., |δσ/σ | � 1. (b) Shear storage
modulus G′ versus axial compressive prestress σ for fibrotic liver
tissue, 2 and 6 weeks after disease onset, replotted from Fig. 5(a) of
Perepelyuk et al. [6]. The data points in each series correspond to
axial strains of 0, 10, 15, 20, and 25%. (c) Compression stiffening
data from normal mammalian brain tissue. Purple triangles are
replotted from Fig. 5(c) of Pogoda et al. [5]. Axial strain ranges from
zero to 40%, in 5 and 10% increments, respectively. (d) Compression
stiffening data from the fat tissue samples studied by Mihai et al.
[10]. Axial strain again ranges from 0 to 40% in 10% increments.
(e) Compression stiffening behavior of 2% agarose gel. Different
data series correspond to different sample aspect ratios (all have R =
1 cm), with all three samples having been cut from the same master
gel. Strain goes from 0 to 25% in 5% increments. The horizontal
shifts required to collapse the L = 9.5 mm and L = 3.8 mm curves
onto the L = 1.8 mm curve are a rough measure of the gravitational
stresses present in the thicker samples—see Ref. [11]. (f) Compres-
sion stiffening behavior of mango fruit flesh, with sample aspect ratio
L/2R = 1/2.
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the BK1 formalism, we decompose the solid cylinder into
small volume elements, each of which experiences a local,
homogeneous strain and undergoes a rigid rotation. Consider
the element located at (xn = rn, yn = 0, zn) and having vol-
ume and energy Vn and Un, respectively. The only nonzero
strain component is, switching to Voigt notation, e4 = 2eyz =
2ezy = γ (rn). Equation (5) then says that

c44 = 1

Vn

∂2Un

∂[γ (rn)]2
− P

2
. (8)

For an isotropic material with Lamé parameters λ(= c12) and
μ(= c44), this result extends to all volume elements, i.e., the
shear modulus is given by

μ = 1

V

∂2U

∂γ 2
− P

2
. (9)

C. Torsion with uniaxial prestress

Next we consider the case Si j = −σδizδ jz. This form is
perhaps easier to justify for the experiments in question, as
neither redistribution of the applied stresses, nor any volume
change, is assumed. Unlike the isotropically prestressed ref-
erence state, however, the current one may have transversely
isotropic material symmetry (assuming the initial, unstressed
material was isotropic). In other words, the cells of the tissue
may be flattened in the z direction.

The counterpart to Eq. (5) is straightforwardly obtained
from BK1’s Eq. (4.21) for the strain energy density. We find

ci jkl = 1

V

∂2U

∂ei j∂ekl
+ σ

4
(4δizδ jzδkl − δizδkzδ jl

− δizδlzδ jk − δ jzδkzδil − δ jzδlzδik ). (10)

Caution is needed here, because while ci jkl was guaranteed to
be a well-defined elastic modulus tensor in the previous sec-
tion, it is no longer so. There are two symmetry “violations”
attributed to the uniaxial prestress, namely cxxzz − czzxx =
−σ and cyyzz − czzyy = −σ , according to BK1’s Eq. (4.20).
Fortunately, c44 is not directly affected by these violations and
presumably remains a valid elastic constant. Proceeding under
this assumption, Eq. (10) gives

c44 = 1

V

∂2U

∂γ 2
− σ

4
(11)

for an isotropic or transversely isotropic material under
torsion.

D. Apparent shear modulus

Suppose one disregards the prestress and defines a quantity

G′ ≡ 1

V

∂2U

∂γ 2
= τ (R)

γ (R)
. (12)

Here the latter equality involving the maximum shear stress
τ (R) is obtained by integrating the energy density �U

V =
1
2 G′γ 2(r) over the cylinder and comparing the result to
Hooke’s Law for torsion. Equation (11) now suggests that a
plot of G′ versus applied uniaxial prestress will be a straight
line having intercept c44 and slope 1/4, provided the applied
uniaxial prestress remains uniaxial within the sample. But if

boundary conditions, geometry, or some other factor dictates
that the uniaxial prestress is redistributed into a hydrostatic
pressure, slope 1/2 is predicted [by Eq. (9)]. Intermediate
slope values are predicted in the more general case where the
applied compression generates a state of prestress having both
uniaxial and isotropic components.

E. Analysis

In Fig. 1, we compare this predicted range of slopes (brack-
eted by solid and dash-dot lines) with compression stiffening
data from fibrotic liver, brain, fat, agarose gel, and mango
fruit flesh. With no fitting parameters, we find good agreement
with fibrotic liver and reasonable agreement with lean and
obese fat, but BK1 predicts too-small a rate of increase
of G′ for the other biomaterials. More specifically, we find
that 2-week-old fibrotic liver redistributes its internal stresses
isotropically, while 6-week-old fibrotic liver redistributes its
internal stresses tranversely to the parallel plates. As fibrotic
liver ages presumably there is more build-up of extracellular
matrix (ECM) material intertwined within the cells. Perhaps
such fibrous material modulates how stresses are redistributed
in the presence of uniaxial compression.

Regarding fat tissue, there exists better agreement with
the isotropically redistributed prestress calculation for lean fat
than for obese, although for obese fat the data remain within
one standard deviation of slope 1/2 for all data points except
the one at largest axial strain. Fat tissue is typically a tissue
of high expandability, however, in an obese state, adipocytes
become hypertrophic as a result of lipid uptake [17]. Fat tissue
also contains ECM material. As fat tissue approaches the
obese state, there are changes in the ECM, mainly through
an increasing deposition of collagen [18].

The shear storage modulus versus axial stress for brain,
agarose gel, and mango fruit flesh data do not appear to exhibit
the predicted BK1 behavior. To explain these, we turn to a
different theory.

IV. BIRCH APPROACH AND THE ROLE OF
THE REFERENCE STATE

A. Background

Several decades prior to BK1, Birch [19] analyzed the
case of hydrostatic compression superposed with shear. He
assumed that for an applied stress of the form Ti j = −Pδi j +
T ′

i j , with T ′
i j/P � 1, the strain response takes the form ei j =

εδi j + e′
i j , with e′

i j/ε � 1. The quantity T ′
i j/e′

i j then defines a
modulus that is amenable to analytic calculation. While there
are several important differences between the Birch and BK1
treatments, the one that places them on distinct conceptual
footings is the reference state, i.e., the configuration around
which the energy density is expanded. Birch’s moduli are
valid for a zero-stress reference state, while BK1 addresses
the prestressed reference state, as detailed above. Another
important difference is that finite strain elasticity theory is
invoked since the hydrostatic compression may be of order
of the moduli of the material [19]. We will not here describe
Birch’s calculation in detail, because it is more complicated
than BK1 and does not easily admit Pδi j → σδizδ jz or other
generalizations. Birch’s result for the shear modulus of an

052413-4



COMPRESSION STIFFENING IN BIOLOGICAL TISSUES: … PHYSICAL REVIEW E 99, 052413 (2019)

isotropic material is

G = μ + 3(3 − 4ν)

2(1 + ν)
P, (13)

where ν is Poisson’s ratio. Unlike the BK1 approach, this
latter approach contains one fitting parameter in the form
of Poisson’s ratio. Should the material be incompressible,
then there is no fitting parameter. It is illuminating that ν

appears in the Birch approach but does not appear in the BK1
approach, and this contrast is at the heart of the difference
between the two approaches. In BK1, all of the compression
that is going to happen has already happened (to the reference
state). Therefore, the material’s compressibility is irrelevant
to any volume conserving deformations with respect to that
reference state. In Birch, the shear response is coupled to
compressibility insofar as both shear and compression are
applied simultaneously to the reference state.

B. Analysis

The Birch approach appears to describe those rheome-
try data in Fig. 1 that are not well described by BK1. In
particular, the variable Poisson’s ratio can generate slopes
dG/dP ranging from 1 (ν = 1/2) to 9/2 (ν = 0) [20]. With
the exception of liver and fat, the rheometry measurements
reveal slopes dG′/dσ close to 1 for nearly incompressible
(ν ≈ 1/2) materials such as brain tissue and agarose gel.
Mango tissue, like other fruit, is more compressible due to
the internal structure of gas pockets [21,22], and we find that
mango tissue exhibits a best-fit slope of 2.46. This value is
in remarkably good agreement with Eq. (13), on substituting
Poisson’s ratio of mango (ν = 0.24 ± 0.05) [23], which gives
dG/dP = 2.47 ± 0.35. That the Birch theory should work
at all for the case of applied uniaxial stress, as opposed to
applied isotropic stress, is perhaps surprising. Nevertheless,
the excellent agreement of Eq. (13) with mango, agarose gel,
and (at small strains) brain tissue data, under σ → P, suggests
that σ is internally redistributed into a hydrostatic pressure P,
even outside the thin-film limit discussed in the Introduction.

V. DISCUSSION

We extend the list of biomaterials exhibiting compressional
stiffening to now include agarose gel and mango fruit flesh.
The ubiquitousness of compressional stiffening in tissues
calls out for an interpretative framework. By focusing on
the observed (but less familiar) linear relationship between
shear storage modulus and uniaxial prestress, we provide that
interpretative framework via the application of two different
classical elasticity results. The first is the BK1 approach,
which has now been extended to the relevant experimental
geometry, and the second is the Birch approach. For both
approaches the shear storage modulus increases linearly with
increasing axial stress and which approach applies depends
on the slope of the curve. The liver and fat tissue exhibit
BK1 behavior, while the agarose gel, brain, and mango tissue
exhibit Birch behavior.

Materials that exhibit Birch behavior—such that applied
uniaxial stress is internally redistributed as a hydrostatic
pressure—appear to behave qualitatively like an elastic bag

filled with fluid. This picture is suitable for both animal and
plant tissue, despite the differences in cell structures, such as
organelles unique to plant cells including cell walls, vacuoles,
and chloroplasts. At least in principle, it should be possible
to directly test for this stress redistribution by including a
pressure gauge in the rheometry apparatus. Importantly, such
a redistribution does not imply that the axial compression
modulus observed in the rheometer experiments should be
similar to the tissue bulk modulus. That may be the case in
the thin-film limit, but in general, the sample is free to bulge
out laterally during compression and any volume change is
likely � πR2�L.

The necessity of the two approaches begs the question:
How can we predict which approach (i.e., reference state) is
applicable for a particular sample? It is interesting to note
that the liver and fat tissue contain a fibrous protein ECM,
while the brain and mango tissue and agarose gel do not.
Speculatively, the presence of this fibrous network could
be the origin of the prestressed reference state required for
BK1 behavior. Axial prestress might be generating contact
changes in this network, and/or inducing anisotropies or
other qualitative changes in the distribution of individual fiber
tensions, such that the “composite” material’s response to
subsequent shear stresses is altered from what it would be
in the absence of a network component. In fact, Perepelyuk
et al. argue that the interplay of an ECM component with a
cellular component is what drives compression stiffening [6].
Their proposed mechanism and conclusions are quite different
from ours, as we will momentarily describe, but we do share
a basic premise in that the fibrous ECM seems to play an
important role in compression stiffening of liver tissue. In
any case, a detailed “microscopic” understanding of BK1 and
Birch’s regimes of applicability to the parallel plate rheom-
etry experiments would be an interesting direction for future
work.

Given our interpretation of the compression stiffening phe-
nomenon from within linear elasticity theory, it is interesting
to consider the question of what constitutes novel compres-
sion stiffening behavior. Any elastically isotropic material
(according to BK1 theory) should obey G′(σ ) = mσ + μ,
with 1/4 � m � 1/2 depending on boundary conditions and
the material’s ability to redistribute stresses, so biological
tissues do not appear to be special in this regard. What is
novel compressional stiffening behavior within the context of
parallel plate rheology, we suggest, are deviations from this
BK1 behavior, such as, perhaps, the Birch behavior which
requires stress redistribution. Another type of deviation is
the compression softening behavior observed in the biopoly-
mer network materials collagen and fibrin [7,8]. Intriguingly,
these also stiffen in tension, with the same magnitude of
slope (dG/d|σ | = 5) as that appearing in Mears’s version
of the Birch theory for the appropriate Poisson ratio (ν =
0) [24,25]. Yet another kind of novelty would be a tran-
sition from one slope value to another over time (given
time-independent boundary conditions). As mentioned earlier,
the liver tissue data in Fig. 1(b) hint at this. A possible
interpretation is that some structural or compositional change
occurs between 2 and 6 weeks after fibrosis onset that re-
duces the extent to which internal stresses are isotropically
redistributed.
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One prior modeling effort to interpret the observed com-
pressional stiffening has already been mentioned. Perepelyuk
et al. propose a phenomenological model for simultaneous
description of compression stiffening, tension softening, and
shear softening [6]. This model involves two components: an
incompressible cellular phase and a compressible filamentous
(ECM) phase. Mechanical connections between the two com-
ponents are allowed to break under load and re-connect when
the load is removed. Compression is thought to expel fluid
through the porous ECM phase, increasing the number of
cell-cell contacts and resulting in greater resistance to shear.
While reasonable agreement is obtained with their liver data
[replotted here in Fig. 1(b)], this agreement might be due
to the fact that there are at least five fitting parameters in
the model (counting the power-law exponents.) Additionally,
the reliance on two components is at odds with agarose
gel and with brain and mango tissue, the former lacking
a cellular component and the latter lacking a filamentous
component, but nonetheless exhibiting compression stiffen-
ing qualitatively similar to that of liver tissue. Meanwhile,
Mihai et al. address compression stiffening in homogeneous
materials by showing that a subclass of Ogden hyperelastic
models can account for compression stiffening in brain and
fat tissue [10], but again, these models have a large num-
ber of fitting parameters. In contrast, the BK1 and Birch
theories provide a simple, universal explanation for com-
pression stiffening and reasonably agree with available data
spanning five different material types, the sole fit parameters
being a binary choice of reference state (i.e., whether to

apply BK1 or Birch), and in the case of Birch, the Pois-
son’s ratio. For nearly incompressible materials, the latter
“fit parameter” is effectively eliminated. Again, which of the
two reference states is appropriate to a given sample may
to be related to the presence or absence of a fibrous ECM
component.

To further test the ideas herein against the models of
Perepelyuk et al. [6] and Mihai et al. [10], we suggest that
additional high-precision rheometer measurement be carried
out for a variety of living and nonliving soft materials, with
simultaneous pressure measurement and supplementary Pois-
son’s ratio measurement, if possible. Also, since in the BK1
theory it is c44, not G′, that appears in the equation of motion
and determines the speed of transverse sound vt = √

c44/ρ, an
independent measurement of sound velocity could constrain
c44 and verify that any pressure dependence of vt enters
only through the equation of state, ρ(P), where ρ is density.
Finally, we mention that in the context of tumor identification
and visualization, the distinction between c44 and G′ should be
important for certain types of ultrasound imaging, especially
shear wave elastography [26].
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