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Abstract – Harnessing a model from composite materials science, we show how microscopic
crease and anticrease features may arise as quasi-particle excitations on the surface of a soft elastic
material, where disorder and drive-induced strain fluctuations play the role of thermal fluctuations.
These features appear above a critical strain fluctuation at which zero-length crease-anticrease
pairs unbind, analogous to vortex unbinding in the Kosterlitz-Thouless transition. Finite-length
creases can be described in the same framework. Our predictions for crease surface profiles and
onset strain agree with previous experiments, and further tests are proposed.
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Cusped inward folds known as creases form on com-
pressed surfaces of a variety of soft elastic materials [1],
including natural rubber [2,3], polymer gels [4–6], silicone
elastomers [7–13], starchy foods [14,15], and the devel-
oping mammalian brain [11,12,16,17]. In the latter con-
text, creases are called “sulci”. Unlike the long-wavelength
buckling of a compressed beam, or the smooth sinusoidal
wrinkles observed on the skin of drying fruit or a tensioned
elastic sheet [18–20], creases are sharply localized in both
their elastic deformation and stresses, thereby defying a
linear perturbation analysis [3,7,14,21,22]. Owing to this
difficulty, little progress has been made toward an ana-
lytical understanding of creases. Instead, numerical min-
imization of a nonlinear neo-Hookean energy functional
has become the standard theoretical tool for investigat-
ing their onset [7,11–14,16,21–23]. A central claim in
much of this work is that creasing is a fundamentally
new, nonlinear instability with no scale [21,22]. Exper-
imental work has also studied the growth of pre-existing
long creases, describing these behaviors in analogy to crack
propagation [8,9].

Typically, the microstructure of a creaseable mate-
rial consists of a random network of crosslinked, flex-
ible or semiflexible polymer chains. Elastic moduli of
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such materials are spatially inhomogeneous, giving rise
to non-affine distortions (fluctuations), upon macroscopic
deformation [24,25]. Under large strains such as those re-
quired to initiate creasing, the RMS amplitude of these
fluctuations can be comparable to the dimensions of the
newly formed creases. For example, embedded tracer par-
ticles reveal non-affine displacements in sheared polyacry-
lamide gel of order 0.3 micron at strains ∼35% [25], while
fully developed creases can be at least as small as ∼1 mi-
cron wide ×3 micron long in the same material [5], and
numerical energy minimization indicates that crease size
goes to zero at the critical point [22]. Simulations in-
voke surface perturbations of one form or another to trig-
ger crease formation [7,11,13,16,22], but otherwise treat
crease formation as a statics problem; in planar geometry,
the creased state is found to have lower elastic energy than
the flat state for uniaxial compressive strain > 35% [14,22]
or equibiaxial strain > 27% [16]. (Compare the experi-
mentally measured critical strains for these two cases: 32–
38% [13] and 33± 2% [5], respectively.) While this statics
approach is appealing for macroscopic creases, and yields
additional predictions for surface profiles and crease pat-
terns that agree with experiments [7,16], the neglect of
fluctuations appears to be unrealistic in the regime of mi-
croscopic creases, i.e., those near creasing onset. In this
regime, the notion of a flat reference state (relative to the
size of the crease) is called into question.
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A crease characterized by strains ϵ ∼ 1 within a volume
V ∼ (0.3 micron)3 would be a strongly athermal object; in
polyacrylamide with shear modulus G ∼ 1 kPa, its elastic
energy would be of order GV ϵ2 ∼ 104kBT . Here, however,
we consider the possibility that compression-induced, non-
affine fluctuations can act as an “effective temperature,”
endowing a micro-crease with an “effective entropy”. This
viewpoint leads to a novel mechanism for the formation of
micro-creases that can be regarded as precursors to macro-
creases. Furthermore, the essential features of our pro-
posed micro-creasing mechanism are amenable to simple
analytic calculations, by virtue of a domain decomposition
that relegates nonlinear elasticity to small, energetically
inconsequential regions analogous to vortex cores.

The main content of this letter is a new quasi-particle
framework for shear stress focusing in soft solids, assum-
ing planar geometry and neglecting surface tension. We
consider the formation of micro-creases from within this
framework, finding evidence that i) creasing onset maps
to the Kosterlitz-Thouless (KT) transition [26], ii) non-
linear deformations can be decoupled from linear, and iii)
compression-induced shear strain fluctuations set the fun-
damental, microscopic lengthscale in the problem. Our
theory makes contact with experimental results on crit-
ical strain and crease surface profiles. In particular, we
obtain a universal critical compressive strain ϵc ≈ 30%
above which creases emerge. Finally, the theory points
to a set of minimal physical ingredients for creasing,
and suggests a possible unification with ridging (forma-
tion of localized surface protrusions) [27], and dimple
crystallization [28,29].

Our point of departure from prior work is to consider
a distinct regime of zero-length creases, qualitatively sim-
ilar to those observed in [6–8], immediately upon nucle-
ation, and those in [16], as the critical point is approached
from above. Deformations reminiscent of these zero-length
creases also appear in a very different continuum elastic
context, namely the shear lag model of composite materi-
als science and engineering [30,31]. In this model, which
will become foundational to our theory of micro-creasing,
one assumes that shear coupling is supported at the in-
terface between a low-dimensional reinforcing phase (i.e.,
1d fibers or 2d slabs) and a surrounding 3d matrix phase.
Next, an approximation is made that the transfer of axial
loads between the two components is accomplished en-
tirely via tension or compression in the reinforcing phase,
and pure shear in the matrix. Axial loads refer to external
or internal forces (such as those arising from differential
growth of the two components) acting parallel to a long
axis of the reinforcing phase. In the case of a fiber-matrix
composite, the model predicts that matrix shear stress and
strain fall off as 1/r, where r is the perpendicular distance
from a fiber. Thus, the matrix deformation and hence the
surface profile scales as ln r (see fig. 1).

Mapping shear lag to 2d electrodynamics. – Let
us take all forces in the shear lag model along z. In the
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Fig. 1: (Colour online) Cartoon of axisymmetric shear
lag. Curved lines indicate the matrix deformation uz ∼

tan(θ) ln(r/R) around an isolated vertical fiber of radius R
(shaded). The left case shows a crease-like deformation that
results when the fiber is under axial tension; the right case
shows an anticrease-like deformation resulting from a fiber un-
der compression. As depicted, both the equilibrium length of
the fiber and the pre-deformed matrix height are shorter in the
left case than in the right case.

matrix phase, the only non-negligible components of the
strain tensor ϵij = (∂iuj + ∂jui)/2 have one index equal
to z and the other not equal to z. Defining a 2d vector
of shear strains γ⃗ = 2(ϵxz, ϵyz), force balance on a volume
element of matrix takes the form of Gauss’s law

∮

γ⃗ · dA =
f0

G
. (1)

Here G is the matrix shear modulus while f0 is the net
force supported at the interface and enclosed by the free-
body diagram (Gaussian surface). In terms of the wetted
perimeter p0(z) and interfacial shear stress τ0(z), the in-
terfacial force is f0 =

∫

dz p0τ0. Our neglect of ϵzz is
justified by requiring p0τ0 to vary slowly with z.

Equivalently, one has a Poisson’s equation for the
(scalar) deformation field uz. For the important special
case of a thin fiber source at the origin,

∇2
ruz(z, r) = 2πR tan(θ(z))δ2(r), (2)

where R is the fiber radius and tan θ = τ0/G is the in-
terfacial shear strain, as indicated in fig. 1. 2πR tan θ is
the “charge” per unit length of fiber. (Note that in the
case of a viscoelastic matrix with storage and loss moduli
given by G′ and G′′, respectively, a frequency-dependent
“dielectric function” appears as 1+iG′′/G′.) The solution
of eq. (2) is

uz(z, r) = −2πR tan(θ(z))C(r), (3)

where C(r) = − ln(|r|/R)/2π is the 2d Coulomb potential
(Green’s function).

Guided by this mapping, we ask whether uz might be
associated with a quasi-charge excitation in which the fiber
of the conventional shear lag model is an abstraction. For
system size L and vertical thickness h, the elastic strain
energy (electrostatic energy) G

2

∫

dV γ2 required to create
an isolated such “ghost fiber” is

Ugf = Ecore + πGhR2 tan2 θ ln(L/R). (4)
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The overbar denotes an average over z, and the core con-
tribution is from (possibly nonlinear) deformations within
r < R. Notably, this result resembles the energy of an iso-
lated vortex [32], and G

2 γ2 is a leading-order term of the
energy density used in the aforementioned neo-Hookean
simulations imposing an incompressibility constraint. Mo-
tivated thus, we now turn to the statistics of ghost fibers.
(In what follows, the term “ghost fiber” will sometimes be
used synonymously with crease (or anticrease, as the case
may be), although it will be good to keep in mind that it
most accurately refers to just the crease core, which is the
fundamental charge-like entity.)

Effective thermodynamics of shear lag quasi-
particles. – The central postulate of this work is that
non-affine strain fluctuations generated during macro-
scopic deformation of a microscopically inhomogeneous
material can play the role of thermal fluctuations. That is,
there is an “effective temperature” that increases during
a slow compression of an elastomer or gel, exciting ghost
fiber quasi-particles out of the vacuum and enabling them
to explore many configurations. Similar effective temper-
ature approaches have been successfully used to describe
the statistics of granular materials, pinned vortex lattices,
artificial spin ice, and other athermal systems [33–37]. For
example, agitating 2d artificial spin ice systems by rotat-
ing them in an external, decreasing magnetic field can
yield “equilibrium” populations of different vertex types,
despite the energy scale of spin flips being ∼105kBT [36].

With justification to follow, we give our effective tem-
perature postulate as

kBTeff ∼ G⟨ϵ2d⟩λ
2
d ld, (5)

where ⟨ϵ2d⟩ is the mean squared amplitude of ϵxz and ϵyz

fluctuations, and λd, ld are the characteristic wavelength
and skin depth of these fluctuations. Equation (5) is rem-
iniscent of the Lindemann criterion for bulk melting of a
harmonic solid [38]. We will identify the effective system
thickness h with ld, below which the system is cold and
inactive.

Working within the microcanonical ensemble, the con-
figurational entropy of a system containing a single ghost
fiber is S = 2kB ln(L/R). The free energy cost to create
the ghost fiber is F = Ugf − TeffS. In the thermodynamic
limit where the finite core energy is dominated by the log-
arithmically divergent term, F < 0 for mean square strain
fluctuations greater than the critical value

⟨ϵ2d⟩c =
π

2

R2

λ2
d

tan2 θ. (6)

Because the quantity that maps to electric charge is
an odd function of θ, a charge dipole corresponds to
a crease-anticrease pair of surface deformations, alterna-
tively viewed as a tension-compression pair of ghost fibers
(see fig. 1). The energy required to create a pure dipole
is finite, in contrast to eq. (4), and thus ghost fibers in

3d are analogous to vortices in 2d: for ⟨ϵ2d⟩ < ⟨ϵ2d⟩c, the
system contains tension-compression bound pairs of ghost
fibers, and at ⟨ϵ2d⟩c there is an unbinding transition (KT
transition).

We now consider the grand canonical ensemble. A
charge neutral system of ghost fibers has Hamiltonian

H =
∑

i

Ecore,i + 4π2Gh
∑

i<j

RiRjtan θi tan θjC(ri − rj).

(7)
So long as any strong nonlinearities in the core are
confined to r ≪ R, simple scaling arguments indicate
Ecore∼GVcoreϵ2core ∼ GhπR2(tan θ)2. This quantity would
appear to vary from one quasi-particle to another because
the charges ∼ Ritan θi are here continuous degrees of free-
dom. However, we can exploit the arbitrariness of the Ri

in order to take the core energy as a meaningful chemical
potential µ. The appropriate choice is Ri = s|tan θi|−1,
where s ∼

√

µ/(Ghπ). This brings the partition function
into the Coulomb gas form

Z =
∑

{ni}

∫

∏

i

d2ri y
P

i n2

i

0 e4π ln y0

P

i<j ninjC(ri−rj), (8)

where ni = ±1 and y0 = exp[−µ/kBTeff] is the ghost fiber
fugacity. The price paid for replacing continuous charges
with discrete ones is that R is now an ambiguous “lattice
constant”. However, we have made available a small and
well-defined lengthscale s; this can presumably replace R
as the short-distance cutoff.

The fugacity y0 and “coupling constant” K =
−(ln y0)/π are related because we are considering a spe-
cific physical system (e.g., ref. [32]). Intersection of
the line y0 = e−πK and the line of fixed points y0 =
−π−2(K−1−π/2) determines the critical inverse coupling
K−1

c = 1.06, and hence the critical mean square strain
fluctuation ⟨ϵ2d⟩c = (s2/λ2

d)K
−1
c . Note K−1

c is depressed
from the mean field value π/2 obtained earlier.

Below ⟨ϵ2d⟩c, large-scale surface deformation would not
be seen because the tension-compression pairs are tightly
bound. The appearance of spatially separated, cusped sur-
face deformations at a critical point that has no explicit
dependence on system thickness or shear modulus is con-
sistent with creasing experiments [5]. So too, we argue
from data in [6–8,16], is the notion of zero-length creases
at the critical point. (But see [9] for a different interpreta-
tion of crease lengths.) In light of the apparently universal
≈ 33% onset strain [5], and the omnipresent microscopic
disorder, one is tempted to identify λd with the lattice
constant s (possibly scaled by a numerical prefactor). In
fact, the simulations of Tallinen et al. use random vertical
displacements of mesh surface nodes [16], consistent with
this picture. A crude estimate of the critical compres-
sive plane strain ϵc can now be made, by approximating
the shear strain fluctuations with a square wave with am-
plitude

√

⟨ϵ2d⟩, such that the corresponding fluctuations in
vertical displacement are a triangular wave with amplitude
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1
2λd

√

⟨ϵ2d⟩. This triangular waveform represents an ideal-
ized surface roughness profile arising from the non-affine
displacements. We further assume conservation of the area
of the free surface, i.e., as the slab is compressed, the sur-
face concertinas between stress concentrators. (Qualita-
tively similar roughening behavior has been observed for
polycrystalline metal under compressive plane strain [39].)
Setting the lattice constant s equal to the largest length-
scale over which shear strain is constant in this model,
namely λd/2, , we then find ϵc = 1−(1+K−1

c )−1/2 = 38%
(mean-field theory) and = 30% (renormalization group),
which bracket 33%.

Ghost fibers in the post-transitional regime. –
Two important features of creasing experiments remain

to be explained by our quasi-particle theory: i) that only
creases and not anticreases appear to be seen, and ii) that
zero-length creases smoothly become finite-length creases.
In this section we consider i), and in the next section we
will consider ii).

The KT transition does not involve (or at least, does not
require) self-contact in the core region. Yet self-contact is
generically observed [7,8,14,16,22]. We propose that self-
contact ensues at strain ϵsc > ϵc, and point out that it
can only be available to creases, because a self-contacting
anticrease is an unphysical concept. Anticreases should
therefore incur a higher-energy penalty than creases, in
the regime ϵ > ϵsc, because they are not as effective at
sequestering surface area (thus material near the surface
must be compressed to a greater extent). The system
cannot exactly get rid of its anticreases, though. Doing
so would generate a non-zero net charge, causing uz to
grow with system size as (

∑

i ni) ln L, clearly inconsistent
with experiments. What happens, we propose, is that an
anticrease’s R increases while its |tan θ| decreases, in such
a way that its charge −2πR|tan θ| stays fixed. In other
words, the negative point charges get smeared out into a
negative background charge (cf. the non-neutral Coulomb
gas [40]). The Poisson equation for this situation reads

∇2
ruz = 2πs

∑

creases

δ2(r − ri) − α, (9)

where −α is a uniform negative charge density, interpreted
as the surface curvature the system would have if the
creases were removed (but the compression maintained).

One might ask if this crease-anticrease shape asym-
metry could be present even during the KT transition.
We suggest the answer is no, because the ghost fiber
bound pairs that exist below ϵc must have an essentially
net zero surface deformation in order to be consistent
with the observed “flat” surface. The shape asymmetry
is something that arises in connection with the energy
penalty for unable-to-self-contact anticreases (but note
that other symmetry-breaking mechanisms might also be
possible, e.g., coupling to an underlying curvature). One
might also ask if there exist conditions in which a sys-
tem of anticreases in a neutralizing positive background

Fig. 2: (Colour online) Deformation field uz (left panel) and
energy density (∇uz)

2 (right panel) associated with a finite-
length ghost slab, for α = 0. Arbitrary units are used for the
vertical axes while the horizontal axes are in units of ℓ. The
two peaks in the energy density are cut off for visualization
purposes, however, they are not singularities.

is realized. Tentative support for this idea comes from
recently observed ridges [27], which are somewhat remi-
niscent of anticreases.

Ghost slabs. – Having considered ghost fibers, we
now consider a thin “ghost slab” of length 2ℓ and height
h characterized by charge density ρ ∼ δ(x)[H(y + ℓ)−
H(y − ℓ)]/R. (The case α ̸= 0 will be treated momen-
tarily). A straightforward application of Green’s method
yields material deformation

uz(r) ∼ (y + ℓ) ln
[

(y + ℓ)2 + x2
]

+ 2x tan−1

(

y + ℓ

x

)

− (y − ℓ) ln
[

(y − ℓ)2 + x2
]

− 2x tan−1

(

y − ℓ

x

)

,

+ constant, (10)

and strain energy density

(∇uz)
2 ∼

[

tan−1

(

y + ℓ

x

)

− tan−1

(

y − ℓ

x

)]2

+

[

tanh−1

(

2ℓy

r2 + ℓ2

)]2

. (11)

Equations (10) and (11) are plotted in fig. 2 for ℓ = 1/2.
In the thermodynamic limit, the rotational contribution
to the ghost slab entropy is insignificant, and the only
important contribution to the elastic energy comes from
the monopole term. Similar arguments to those used
above lead to a critical strain fluctuation for slabs ⟨ϵ2d⟩c,slab

∼(ℓ2/λ2
d) tan2 θ. This result reveals ghost fibers to be a

limiting case of ghost slabs (i.e., as ℓ → R).
Experiments and simulations employing uniaxial strain

tend to generate straight, parallel creases; when the strain
is large, the creases can span the system size, forming a
1d array [7,8,16]. Within our electrostatics framework,
for α ̸= 0, surface profiles of such systems are predicted
to have the same form as the electrostatic potential of a
1d Coulomb crystal (a periodic stack of infinite, charged
sheets embedded in a charge-neutralizing, uniform back-
ground). Figure 3(a) shows a test of this prediction.
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1d Coulomb crystal  
fit to crease array

1d screened-Coulomb  
fit to isolated crease

(a)

(b) (c)

Fig. 3: (Colour online) (a) Confocal microscope image of a
1d crease array in a PDMS elastomer film under 55% uniax-
ial compression (via attachment to a pre-stretched substrate).
Inset: isolated crease in a PDMS film under 46% compression.
(Images courtesy of Dayong Chen and Ryan Hayward.) In
both images the crease(s) run perpendicular to the plane of the
page, the small bright regions are regions of self-contact, and
the scale bar indicates 40 microns. The 1d Coulomb crystal fit
is of the form uz(xi) ∼ xi−x2

i /a, as discussed in the main text,
where a is the average crease spacing taken from the experi-
mental image, and xi is the spatial coordinate within the i-th
unit cell. (b) Midline saggital section of a mouse cerebellum
at 18.5 embryonic days development, roughly two days after
creasing onset (courtesy of Andrew Lawton and Alex Joyner).
The scale bar indicates 200 microns. (c) Creasing in a sweet
dumpling squash (courtesy of Indian Creek Farm, Ithaca, NY),
elsewhere described as wrinkling [41,42].

The possibility of the background being “polarizable” is
investigated via the d-dimensional charge screening equa-
tion (∇2

d − λ−2)φ = −4πQδ(d), where Q is the charge
and λ is the screening length [43]. The d = 1 solution,
φ(x) ∼ e−x/λ, is fit to the profile of an isolated long crease
in the inset of fig. 3(a). The qualitative shape of the
crease array in fig. 3(a) (parabolic crests between sharp
cusps) occurs in other settings such as a mouse cerebel-
lum and a winter squash (fig. 3(b), (c)). Prior work has
modeled these as elastic materials [44,45], suggesting the
same mechanism may be at play, in spite of the different
(curved vs. planar) geometry.

Experiments and simulations employing equibiaxial
strain tend to generate a square lattice of short, straight
creases with each nearest-neighbor pair having relative ori-
entation of 90 degrees; at high strains, a hexagonal lattice
of 3-fold symmetric, Y-shaped creases is also seen [16].
(Figure 3(c) in [5] exhibits both motifs.) Within our
framework, such patterns again have a natural interpre-
tation as charge-crystallized shear lag quasi-particles. In

the limit where the spatial extent of quasi-particles is
very small compared with their lattice spacing (i.e., they
are ghost fiber-like), the creasing pattern is predicted to
be a 2d Coulomb crystal with hexagonal symmetry (e.g.,
ref. [46]). In fact the hexagonal dimple crystal observed
in [28] is suggestive of this, and further, the authors char-
acterize these dimples as being quasi-particles with mu-
tual repulsive interactions. Outside the limit of fiber-like
quasi-particles, the ground-state crystal structure is an in-
teresting topic for future work.

Discussion. – Upon building a composite materials-
inspired quasi-particle framework, we have found evidence
for a micro-creasing scenario that involves at least three
distinct regimes. For in-plane compressive strain ϵ < ϵc,
the system contains tightly bound pairs of ghost fibers
whose deformation fields largely cancel. For ϵc < ϵ < ϵsc,
the pairs are unbound, giving rise to spatially sepa-
rated, cusped surface deformations. Also in this regime,
zero-length (anti)creases smoothly become finite-length
(anti)creases, as ghost fibers smoothly change dimension-
ality into ghost slabs. For ϵ > ϵsc, anticreases smear
out into a charge-compensating background, while repul-
sive interactions between creases causes them to organize
into a Coulomb crystal. The KT transition is predicted
to occur at a universal critical strain ϵc ≈ 30% (renor-
malization group analysis) and self-contact is expected to
commence at a slightly higher strain ϵsc. Both transition
points should be observable, by virtue of the characteris-
tics of the regimes they delineate (e.g., surface profiles),
providing a means for experimental tests of our theory.

Additionally, numerical and experimental work could be
undertaken to test our postulate of an effective tempera-
ture arising from non-affine fluctuations. While eq. (5)
is appealing in that it leads to a critical point indepen-
dent of shear modulus and system thickness, as well as
a reasonably accurate value for the onset strain within
the approximation scheme described above, it is possible
that the effective temperature has a different form, or that
there is no effective temperature. Some starting points
would be to investigate the time-dependence of non-affine
fluctuations and to look for telltale fluctuation-dissipation
violations.

High-resolution imaging will be important for accessing
the proposed micro-crease regime, where the characteristic
lengthscale is set by non-affine fluctuations of the inher-
ently disordered polymer network. We re-emphasize the
presence of this fundamental lengthscale in our theory of
micro-creases, which is in contrast to prior work claiming
the creasing instability is scale-free [21,22].

Finally, independence of ϵc from shear modulus and sys-
tem thickness suggests that creasing is, in its most general
form, an interface phenomenon between dissimilar elas-
tomers or gels, and that creasing of a free surface is merely
a special case. The concepts of crease and anticrease nat-
urally generalize to an interface: a crease in material A
can equally well be viewed as an anticrease in material B,
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and vice versa (see, e.g., ref. [47]). In the electrostatic
picture, the essential difference between surface and in-
terfacial creasing is in the behavior of the charge density
2πR tan(θ(z)). For surface creasing, tan θ is a monotoni-
cally increasing (or decreasing) function of z, whereas for
interfacial creasing, tan θ goes through a maximum (or
minimum) at the interface. All the interesting 2d Coulomb
gas physics is contained in the z-averaged Poisson equa-
tion, however, rendering these details unimportant.
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