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ABSTRACT

A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei
in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs.
Candidate structures are “bred” by a genetic algorithmand optimized at constant pressure under the assumption of
linear response (Thomas–Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct
crystal structures in the T=0 bulk phase diagrams, five of which are complicated multinary structures not
previously predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but
compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa
interactions, including and extending to the regime of low-density colloidal suspensions made in a laboratory. As
an application of these main results, we self-consistently couple the phase stability problem to the equations for a
self-gravitating, hydrostatically stable white dwarf, with fixed overall composition. To our knowledge, this is the
first attempt to incorporate complex multinary phases into the equilibrium phase-layering diagram and mass–
radius-composition dependence, both of which are reported for He–C–O and C–O–Ne white dwarfs. Finite
thickness interfacial phases (“interphases”) show up at the boundaries between single-component body-centered
cubic (bcc) crystalline regions, some of which have lower lattice symmetry than cubic. A second application—
quasi-static settling of heavy nuclei in white dwarfs—builds on our equilibrium phase-layering method. Tests of
this nonequilibrium method reveal extra phases that play the role of transient host phases for the settling species.
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1. INTRODUCTION

When an impure white dwarf (WD) or neutron star crust
(NSC) is slowly cooled from above its melting temperature,
one expects that the extra compositional degrees of freedom are
taken advantage of to form crystals that are more efficiently
packed than phase-separated body-centered cubic (bcc) lattices.
Indeed, several investigators have considered non-Bravais and
multicomponent lattices as the possible ground state of
astrophysical compact objects. One of the earliest was Dyson
(1971), who suggested that a rock salt structure of Fe and He
nuclei might be stable. More recently, Kozhberov & Baiko
(2012) studied cesium-chloride and magnesium-diboride struc-
tures within the Coulomb crystal model. Kobyakov & Pethick
(2014) have argued that the ground-state structure above
neutron drip density may be similar to that of the displacive
ferroelectric BaTiO3, owing to the symmetry-lowering effect of
interstitial neutrons on a bcc lattice of nuclei. A related line of
inquiry concerns the freezing of multicomponent ion plasmas
from the liquid state. See Medin & Cumming (2010) for a
semianalytic calculation and references to earlier numerical
methods. One such method—classical molecular dynamics—
has been used extensively to simulate a multicomponent
plasma with the Gupta et al. (2007) composition (Horowitz
et al. 2007, 2009; Horowitz & Berry 2009). The latter of these
works features a 14-component, ≈28,000-particle system that
was annealed for ~107 phonon cycles below the melting
temperature. A dominantly Se (Z = 34) bcc lattice was formed,
with small-Z nuclei occupying interstitial positions and larger-Z
nuclei acting as substitutional impurities. In addition, there was
a tendency for small-Z nuclei to cluster together, forming an

effective large-Z particle. In a different simulation where
annealing was again carried out for ∼107 phonon cycles
(Horowitz et al. 2009), phase-separated regions (microcrystals)
formed in the solid phase. One phase was depleted in small-Z
nuclei, while another was enriched.
Simulated annealing is an excellent means for directly

modeling the dynamics of crystalline systems, but it often
cannot access the very long timescales associated with the
nucleation and growth of complex multicomponent crystal
phases, owing to the exponentially slow dynamics of
surmounting reaction barriers against the complex cooperative
rearrangements needed to form such crystals. For example,
terrestrial carbon steels, which typically have only two to three
alloying elements, must be annealed for a minimum of ∼1013
phonon cycles (∼10 s) to find their ground state (American
Society for Metals 1977). Alternative methods, including
random structure searching (Pickard & Needs 2011), particle
swarm optimization (Wang et al. 2010), and genetic/evolu-
tionary search techniques (Oganov & Glass 2006; Abraham &
Probert 2008; Wu et al. 2014), have been applied with great
success to this “crystal structure problem,” but have not yet
been applied at the extreme conditions of compact astro-
physical objects. When coupled with an appropriate description
of the (fully pressure-ionized) microphysics, such methods
could provide a means to efficiently search for new crystal
structures in multicomponent WDs and NSCs, complementing
the existing simulated annealing work.
The existence of lower-symmetry (i.e., noncubic) and/or

multinary phases within WDs and NSCs could have several
astrophysical implications. Most astrophysical calculations
assume that the material is a bcc polycrystal with grain sizes
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small compared to the other macroscopic physical scales in the
problem. Therefore, for example, the rank-four elastic tensor is
averaged and smoothed to produce a scalar shear modulus
relating the strain response to an applied stress (one popular
averaging procedure is described by Ogata & Ichimaru 1990).
The possibility of multiple, complicated lattice structuresand
preferential alignment with, e.g., the local magnetic fieldwould
necessitate computing the full elastic tensor. Anisotropies, soft
phonon modes, and elastic instabilities such as the incipient
ones described in Engstrom et al. (2015) could have significant
effects on elasticity-related astrophysical observables such as
magnetar flares (Perna & Pons 2011), related quasi-periodic
oscillations (Israel et al. 2005), and possibly some pulsar
glitches (Chamel & Haensel 2008). It could also significantly
affect the future observability of gravitational-wave emission,
in the context of bothmagnetar flares and continuous waves
(Johnson-McDaniel & Owen 2013). Grain/phase domain
boundaries would lead to preferred stress-failure locationsand
on large scales might affect dissipation of modes involving the
crust such as torsion or shear modes (Israel et al. 2005, used to
explain quasi-periodic oscillations after magnetar flares) and r-
modes (similar to the “crust freezing” scenario in Lindblom
et al. 2000). These again would have implications for both
electromagnetic and gravitational wave observations. Another
kind of implication has to do with the composition of WD
debris disks and planetary systems, inferred from metal
abundances in the accreting WD’s atmosphere (Rafikov 2011;
Barber et al. 2012). Entering into this calculation is the settling
rate of the high-Z metals. In principle, this rate depends on the
buoyancy of the settling species’ host phase(s), as well as the
microphysics involved in ordinary grain growth processes,
namely, interfacial energies and grain boundary mobilities
(Krill & Chen 2002). Finally, tightly packed multicomponent
crystal structures may lower Coulomb penetration barriers for
certain pycnonuclear fusion reactions, characteristically driven
by zero-point vibrations of high-density crystals. According to
Yakovlev et al. (2006), who consider pycnonuclear reactions in
multicomponent plasmas, the reaction rate between a fixed pair
of neighboring nuclei is regulated primarily by the exponential
factor C dexp 2( )m w- . Here C is a constant, μ is the reduced
mass of the reacting nuclei, d is their equilibrium separation
distance, and ω is an effective oscillator frequency coming from
phonons. Clearly this reaction rate is extremely sensitive to
static and dynamic properties of the specific crystal structure.
For example, a high reaction rate may be associated with the
small-Z clustering behavior found by Horowitz & Berry (2009)
and mentioned earlier in the introduction. In contrast to single-
component WD and NSC models, pycnonuclear reaction rates
in multicomponent systems are subject to much theoretical
uncertainty owing to the ground-state crystal structures (as well
as the types of defects supported and the manner in which
impurities are absorbed) being largely unexplored (Yakovlev
et al. 2006).

In this work we carry out a systematic search for the ground-
state crystal structure of three-component (ternary) systems at
conditions relevant to WDs and NSCs. The main goals are (1)
to identify possible new phases through global search of the
multicomponent crystal structure phase diagramand (2) to
determine in what contexts those phases might appear in WDs
and NSCs through sample applications to layering stability. To

the first end, we employ a popular genetic search algorithm.
The lowest-enthalpy structures found by the genetic search are
included in bulk phase diagram calculations, which reveal five
new complicated binary and ternary crystal structures, four
having sub-cubic lattice symmetry. To the second end, we
demonstrate a self-consistent coupling of the phase stability
calculation with the basic equations of a self-gravitating,
hydrostatically stable WD. Several compositional instances of
the newly found binary phases show up as finite thickness
“interphases” between pure bcc strata in cold, He–C–O and C–
O–Ne WDs. Additional binary phases make a transient
appearance in nonequilibrium settling calculations, as host
phases for the settling species.

2. MICROPHYSICS AND STRUCTURAL OPTIMIZATION
DETAILS

Our starting point is an effective Hamiltonian for completely
pressure-ionized matter. We work within linear response theory
—see Section 5 of Pollock & Hansen (1973)and Baiko (2002),
for example. In this framework, a system of point nuclei (with
charges Zie and static positions ri) immersed in a polarizable,
charge-compensating background of electrons has kinetic plus
electrostatic potential energy
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where k( ) is the dielectric function of the electron background
(compare Baiko 2002, Equations (1)–(3)). It is not immediately
obvious that the above Hamiltonian includes the leading-order
correction to the kinetic energy T0 of the uniform electron
gas (it does). This can be seen by expanding the kinetic
energy in powers of the density nonuniformity correction, T =

T
e
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only the first two terms such that a total energy minimization
identifies kG 1( )- - as the static response function of the
uniform gas. The static response function is in turn
related to the dielectric function through kG ( ) =

kk4 12 1( ( ) )p -- - . Equation (1) also contains all Coulomb
interactions except for the infinite nuclear self energies. With a
choice of the simple Thomas–Fermi dielectric function
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In performing structural optimizations, one converges the
energy by working with a unit cell of volume Vc and N 1-
periodic copies thereof. If R is a unit cell translation vector and
p q, index the basis (i.e., the specific arrangement of nuclei
within the unit cell), the total energy per cell is written as
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where R r rpq p q∣ ∣= + -R and the prime on the last sum
indicates that terms with 0pq =R are excluded. For this work
we use kinetic energy density
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corresponding to the relativistic, degenerate gas. Here
m ce el = is the reduced Compton wavelength, x =

p m c n3F e e e
2 1 3( )l p= , x x1 2b = + , and 1 137a » is

the fine-structure constant. The Thomas–Fermi description
breaks down when the screening length localizes electrons to
within their Compton wavelength; this occurs for x 10
( 109r g/cc). Approaching this extreme relativistic limit, the
ratio of screening length to the characteristic distance between
nuclei r Z n3 4s e

1 3( )p= á ñ tends to a constant (for a bcc lattice
of Fe nuclei, the constant is 1.82), so we might anticipate that
phase boundaries become stationary in this scale-invariant
limit. Saturation of k rs0

1- at this small value is indicative of the
overscreening predicted by the Thomas–Fermi model. Within
these constraints, however, the model has the advantage of
being both reasonably accurate and computationally efficient,
readily incorporated into a global search of crystal structure and
composition.

Structural optimizations using Equations (3)–(5) are con-
veniently carried out at constant volume—one need only
minimize a pairwise sum of effective Yukawa interactions,
which converges rapidly in real space for k r 1s0

1 ~- . Because
it will prove useful for the phase-layering calculation described
later, we choose instead to perform structural optimizations at
constant external pressure P and minimize the enthalpy. This
can be accomplished using a modified version of the General
Utility Lattice Program (GULP; Gale & Rohl 2003), where the
Yukawa interaction (available as a special case of the “general”
pair potential) is given the capability to handle a Vc-dependent
screening length. We modify GULP’s enthalpy per unit cell to
h E N PVTF TF c= + , and the first strain derivatives of the
enthalpy (sufficient for steepest descents and conjugate

gradient methods) are accordingly modified to
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where P n n ne e e0
2

0( )t= ¶ ¶ is the kinetic pressure of the
uniform electron gas. Derivatives of hTF with respect to
GULP’s remaining degrees of freedom (fractional basis
coordinates) are not affected by k k Vc0 0 ( ) .

3. GENETIC SEARCH PROGRAM FOR DETERMINATION
OF THE T=0 BULK PHASE DIAGRAMS

This section describes a global search of composition and
structure, using five ternary systems of nuclei thought to be
relatively prevalent in WD or NSC matter, and covering a
range of distinct crystal chemistries: He–C–O, C–O–Ne, C–O–
Fe, O–Fe–Se, and Fe–As–Se. The first two ternary systems are
relevant to WDs, likely including those that are Type Ia
supernova(SN Ia) progenitors (Shen & Bildsten 2014). The
third may also be relevant to WDs having undergone a failed-
detonation SN Ia (Jordan et al. 2012). The rationale for
choosing the remaining two is that these particular nuclei are
representative and/or prevalent among the Gupta et al. (2007)
abundances near neutron drip. Incorporating a full list of
abundances ( 17» species) would be intractable for the type of
calculation described in this work. Moreover, we can take a
lesson from Earth-condition crystals, which typically have only
one, two, or three elements (sometimes four). This appears to
be due to general properties of crystal stability related to phase
separation of complex unit cells: basically, once a structure
reaches a sufficient level of complexity that it can accom-
modate the special geometrical characteristics of its constituent
atoms, it is disadvantageous to make the unit cell any larger (in
the sense of adding more atoms), since that just reduces the
amount of favorable repetition possible with a given number of
atoms. Exploring more ternary combinations is also likely to
give diminishing returns in the prediction of new structures.
Roughly speaking, with a smooth and spherically symmetric
interaction such as the Yukawa potential, there are only four
qualitatively different ternary combinations: one big Z and two
small Zs, two big and one small, all three mismatched, and all
three similar. As long as the screening length regimes
(characterized by k rs0

1- ) are not too different, one expects to
see a continuity of structures formed by systems having similar
relative Zs (or perhaps squared Zs), since in the case of
complete pressure ionization there are no complex crystal
chemistry effects due to covalent bonding, rehybridization, or
the filling of atomic orbitals. Another reason for studying the
specific ternary systems mentioned above is that they cover at
least three (arguably all four) of the qualitatively different
combinations.
We carry out ground-state structure searches at a series of

pressures and stoichiometries (relative amounts of different
nuclei), enumerated below, using the evolutionary crystal

3
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structure prediction software XtalOpt r8.0 (Lonie &
Zurek 2011) together with GULP optimization.1 XtalOpt first
generates a pool of random structures all having the desired
stoichiometry. Each of these zeroth-generation structures is
optimized to its local free energy minimum (as described in the
previous section)and evaluated for “fitness”—essentially a
probability of breeding based on enthalpy relative to sibling
structures. Fit parents are operated on in one of three distinct
ways in an attempt to generate even fitter (lowerenthalpy)
offspring. One type of operation involves cutting and splicing
two parent unit cells by expressing the locations of each atom
within the unit cell (i.e., the basis vectors) in terms of lattice
coordinates (i.e., linear combinations of the three lattice vectors
with weights all less than one) and then taking one fraction of
the unit cell from one parent and the remaining fraction from
the other. The remaining two genetic operations involve a
single parent: one combines particle permutations with a
homogeneous strain; the other combines a homogeneous strain
with a cosine deformation. Parameters in each of these
operational elements are chosen from uniform random
distributions. The optimizer is again called on to relax the
child structures, and the process is iterated for many
generations.

For simplicity, we assume that the WD/NSC ground state is
a polycrystalline mixture of stoichiometric compounds. A
stoichiometric compound is here defined to be a periodic solid
in which stoichiometry does not vary across unit cells. Notably
excluded from our analysis are alloy phases (e.g., those with
disordered occupation of the lattice sites by more than one atom
type), and we further restrict to a subset of the possible
stoichiometric compounds. For a given ternary system of nuclei
A–B–C, a constant pressure search is performed at P 1011= and
1016 GPa for each of the nominally 125 stoichiometries A B Cn m ℓ
where n m ℓ, , 0 ... 4= . Search cells with small number of
particles n m ℓ+ + are removed from the search program if
they are submultiples of larger cells;thus, there are 98 searches
per ternary system, per pressure. Each of these searches is run
out to at least 480 optimized, genetically operated-on structures,
except in the case of single-component searches, which are run
out to at least 80 optimized structures (the first 20 seed
structures are randomly generated). Lattice sums are done in
real space with cutoff k20 0

1» - and are expected to be converged
to seven to eight digits. This level of accuracy is important, as
we find that enthalpies of competing structures can be the same
out to six digits. Default XtalOpt search parameters are used
throughout, and following the suggestions put forth in the
XtalOpt implementation paper (Lonie & Zurek 2011), we
benchmark the search parameters by constructing Hartke plots
for several relativistic screened-Coulomb systems (see Figure 1).
Hartke plots gauge the performance of a genetic search and help
establish a stopping criterion. Our choice of search duration,
previously mentioned, is in part motivated by the “Hartke
lifetimes” found in these tests.

The lowest-enthalpy structure found in each search is
included in a bulk phase stability calculation, such as that
performed by Thermo-Calc software (Andersson et al. 2002).

For a given set of N 2C + state variables (NC being the number
of components) Thermo-Calc finds the global minimum Gibbs
free energy that lies on a plane tangent to the available phases’
Gibbs energy surfaces. A phase diagram representable as a
2Dplot is then constructed from the set of tangent planes found
by varying any two of the state variables. (For a pedagogical
reference to phase diagrams, see the book by Hillert 2007.)
Since all the phases considered in this work are stoichiometric
compounds, there is a simplification in that the phases’ Gibbs
energy surfaces are themselves points. Consequently, in this
work, any point within a ternary phase diagram is a point at
which three different phases coexist as a polycrystalline
mixture (unless the point happens to be on a phase boundary,
in which case two phases coexist). If a structure appears in the
equilibrium phase diagram at either P 1011= or 1016 GPa, it is
reoptimized at intermediate-pressure decades to obtain the
pressure dependence of the phase diagram. It is possible,
though unlikely, that there are phases stable only over a narrow
band of pressure that are missed by this procedure (the full
search scheme was carried out for the C–O–Fe system at
several intermediate pressures and found no such “missed”
phases, lending support to this approach). Finally, we mention
the single exception to the search program described above: in
the He–C–O system, real-space lattice sums converge much

Figure 1. Hartke plots for search cells FeO3C2 (top) and Fe4O4C4 (bottom).
y(x) is the enthalpy of the lowest-enthalpy structure found within the range of
structure numbers: zero to x. The initial 20 seed structures (randomly generated
by XtalOpt) are not included;thus, the Hartke plot contains information only
about structures that have been genetically operatedon. For each plot, 100 runs
were made with identical parameters. In the case where all runs eventually
found the same lowest-enthalpy structure (top), the worst–best is the single run
that took the longest to find it. In the case where not all runs found the same
lowest-enthalpy structure (bottom), the worst–best is the single run whose
winning structure had the highest enthalpy. Best–best was the quickest to find
the overall lowest-enthalpy structure, and average–best is the average over all
100 runs. The Hartke lifetimes associated with the exponential fits to average–
best (black dashed lines) are 35 (top) and 123 (bottom). The winning structure
found in the FeO3C2 search appears in the bulk phase diagram, as the η phase.
The Fe4O4C4 search has the most degrees of freedom out of any search cell in
our program; its winning structure does not appear in the phase diagram.

1 It is convenient to reinterpret XtalOpt and GULP’s internally consistent (eV,
Å, GPa) unit system as (10d eV, 10−d Å, 104d GPa), so that issues with
numerical limits can be avoided. These codes were, of course, originally
intended for Earth-condition materials! Useful choices of the integer d include
2, 3, and 4. In this scheme, the relativity parameter appearing in Equations (4)
and (5) becomes x n1.1946484 10d

e
2 1 3= ´ - , and the prefactor in Equa-

tion (4) becomes m c 8 1.1239083 10e e
d2 2 3 11 4p l = ´ - .
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more slowly than in the other systems owing to the larger
k rs0

1- , so the full 98 searches are carried out only at
P 1011= GPa.

4. BULK PHASE DIAGRAM RESULTS

While pressureinvariance of the T=0 phase diagram was
anticipated in the extreme relativistic limit, it comes as some
surprise that the pressureindependence persists well below this
limit, nearly to the threshold for full pressure ionization.
Figure 2 shows that for all five ternary systems studied, no P-
induced phase transitions were found above 1012 GPa. For bcc
Fe, this pressure corresponds to density 6.18 105´ g/cc and
screening length k r 1.36s0

1 =- , or about 75% of the saturation
value. In general, screening length on the order of the lattice
spacing appears to be a requisite for P-driven phase transitions.
Further supporting this conclusion is the fact that the He–C–O
and C–O–Ne systems do not undergo any pressure-induced
transitions in the range 1011–1016 GPa; within that range,
screening lengths in these small-Z systems are significantly
larger than one lattice spacing.

Another finding is that combinations of nuclei with
significantly mismatched Zs are much more conducive to
efficient multicomponent packings than are systems where the
Zs are fairly similar. For example, the Fe–As–Se system has an
extremely simple low-pressure phase diagram: at any composi-
tion, the microstructure consists simply of phase-separated bcc
crystallites. Multicomponent phases appear at high pressure,

but they have the simple cesium-chloride structure. In contrast,
the C–O–Fe phase diagram is quite rich. Combining one large
Z and two smaller Zs results in a variety of binary and ternary
crystal structures (enumerated in Table 1), all of which are
more efficient (have a higher packing fraction) than phase-
separated bcc lattices.
Both He–C–O and O–Fe–Se systems (two large, one small)

feature all the same phases as C–O–Fe, except for the two
ternary compounds that do not appear. While a continuity of
structures appearing between these systems was anticipated, it
is striking that at high pressures the two phase diagrams are
identical. Close similarity is also noted between the Fe–As–Se
and C–O–Ne systems, which both consist of three similar Zs.
The outlier in this comparison is the nontrivial C–Ne binary
structure, described in Table 1. These observations are
consistent with the idea that it is the combination of relative
Zs, and not of absolute Zs, that is important in determining the
high-pressure phase diagram.
In the pressure and screening length regimes appropriate to

this work (while P ranges from 1011 to 1016 GPa, k rs0
1- ranges

from 1.13 to 1.81 for bcc Fe), there is a competition between
close packing and next-nearest-neighbor interactions, which the
closest packed structures tend not to win. This is exemplified
by bcc’s favorability over face-centered cubic (fcc), and the
fact that only one of the equilibrium phases found (magnesium-
diboride structure) also appears in the phase diagram of densest
binary sphere packings (Hopkins et al. 2011, 2012). The
simplest multicomponent crystals have structures that are also

Figure 2. T=0 bulk phase diagrams for relativistic screened-Coulomb systems. Each pair of vertically aligned diagrams corresponds to a specific ternary system of
nuclei, while the two rows give the pressure dependence. Across the five ternary systems investigated, no pressure dependence was found in the range 1012–1016 GPa,
despite the fact that the screening length k0

1- varies considerably over this range (from 1.36rs to 1.81rs for bcc Fe). Following from our assumptions described in the
main text, the microstructure within a given triangular region is a polycrystalline mixture of the three stoichiometric compounds (phases) indicated at the triangle’s
vertices. At points on a red line (phase boundary), the microstructure is a polycrystalline mixture of the two phases indicated at the line’s endpoints (an intersection
with a black line defines an endpoint, in the space-saving representation above). All distinct phases are labeled with Greek letters and explained in Table 1.
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assumed by some ionic compounds under low-pressure
conditions, which may reflect the fact that ionic solids have a
simple close-shell electronic structure (ionic solids also have
strong +/− Coulomb interactions that are missing here). When
a pair of Zs are not too dissimilar, they usually form
thecesium-chloride structure, e.g., OC, NeO, SeFe, SeAs,
and AsFe. When they are more dissimilar, they tend to form
magnesium-diboride structure, e.g., OHe2, FeC2, and SeO2.

Magnesium diboride is our first encounter with sub-cubic
symmetry, which could give rise to transport anisotropy, elastic
anisotropy, and other effects such as a magnetic field coupling
to the structure orientation. A quite prevalent but more
complicated orthorhombic structure occurs at chemical com-
positions O4He4, C4He4, Fe4O4, Fe4C4, and Se4O4, where these
different instances can be interconverted by small adjustments
of bond lengths and angles. A tetragonal structure occurs at

Table 1
Selected Compounds Appearing in the C–O–Fe and C–O–Ne Bulk Phase Diagrams, as Indicated in Figure 2

Crystallographic Relative Relative Density Relative
Phase Unit Space Group Proton Baryon to Bulk, Phase- Views along (or Slightly Oblique to)
Label Formula or Structure Density Densitya separated bccb Some High-symmetry Directions

α Fe bcc 1 1 1
α O bcc 0.982 0.912 1
α C bcc 0.980 0.910 1
β OC cesium-chloride 0.981 0.911 1.000001
γ FeC2 magnesium-diboride 0.994 0.971 1.000061
δ Fe4O4 Cmcm (orthorhombic) 0.996 0.979 1.000040 similar to δ-Fe4C4, see below
δ Fe4C4 Cmcm (orthorhombic) 0.996 0.983 1.000056

ò Fe4O2 I4/mcm (tetragonal) 0.998 0.988 1.000024

ζ FeOC4 P6/mmm (hexagonal) 0.989 0.950 1.000044

η FeO3C2 P6/mmm (hexagonal) 0.989 0.948 1.000039

θ Ne2C4 Fd−3 m (cubic) 0.997 0.997 1.000021

Notes.All numerical values given here correspond to P 1016= GPa. Relative proton density is a measure of geometrical packing efficiency; relative baryon density
includes the nongeometrical effect of neutron fractions. The reference phase for these relative densities is α-Fe, except in the case of θ-Ne2C4, for which the reference
phase is α-Ne. Renderings have gray C, red O, green Fe, and violet Ne, with sphere volume proportional to the nuclear charge Z. In the δ and ò renderings, bonds
indicate Fe–Fe the first nearest neighbors. If the space group is listed instead of a specific crystal structure, the unit formula gives the composition of the search cell in
which the structure was found, not necessarily that of the primitive cell. Pdb files of the structures (for all compositional instances) are included as supplementary
materials in the online version.
a Using 12C, 16O, 20Ne, and 56Fe.
b Defined as the sum of cell volumes after phase separation into bulk bcc phases, divided by the original cell volume.
(This table is available in its entirety in FITS format.)
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compositions C4He2 and Fe4O2; this is the second-highest
density structure in the C–O–Fe system and could potentially
drive oxygen to greater depths than it would otherwise go. The
C–O–Fe system also features two ternary structures FeOC4 and
FeO3C2, both with hexagonal symmetry. FeOC4 can be viewed
as magnesium-diboride structure, with the triangular magne-
sium planes alternating between Fe and O compositions.
FeO3C2 consists of alternating layers of kagome O and
honeycomb C, with Fe at the holes in the honeycomb layers.

A general feature of the the ternary bulk phase diagrams is
that coexisting phases have mass density differences, owing to
a combination of neutron fraction and geometrical packing
effects. These differences can be as large as 10~ % of the total
density and will result in stratification of phase domains in the
presence of a gravitational field—the problem to which we
now turn.

5. EQUILIBRIUM-LAYERING CALCULATION

Here we give an application of our high-pressure crystal
chemistry results to WDs at a given fixed overall composition.
The equilibrium phase-layering diagram of a zero-temperature
WD is computed self-consistently, allowing for arbitrary
numbers of components NC and phases NP that can be formed
from these components. The problem is decomposed into two
parts: one part is a microscopic phase stability calculation that
produces a function h( )r , where ρ is density and h is enthalpy
per unit mass;the other is a simple stellar structure calculation
that determines the pressure–radius dependence P(r). We
iterate between these two parts. The former is inspired by a
technique used among chemical engineers to study species
segregation in oil reservoirs(see Esposito et al. 2000).

In the following, we will make use of the virial theorem for
the gravitational potential energy W of a WD, given by

W P r dr3 4 . 7
R

0

2 ( )ò p= -

We begin by discretizing the star into NL onion layers of
uniform thickness r R NLD = . If rD is small compared to the
scale height of pressure H dr d PlogP = - , the ith layer may
be treated as a bulk equilibrium system at constant pressure Pi,
and one may work with the modified Helmholtz free energy

F P V n T P4 , . 8
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i i
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For each term in the sum over layers, PV3 i i- comes from the
discrete version of Equation (7), and another PVi i- cancels the
corresponding quantity in the Gibbs free energy of the layer,

n T P,i i( )å ma a a . Here n ia is the (unknown) molar amount of
phase α present in layer i, and ma is the bulk chemical potential
of phase α. (The phase index α is not to be confused with the
bcc structure, as in Table 1.) We have thus avoided the
complication of introducing a gravitational term into the
chemical potentials, including it instead at the level of the
layers. This comes at the cost of supplying a pressure function
P(r) consistent with hydrostatic equilibrium, implicit in
Equations (7) and (8). Let us assume that we have such a
pressure function. (For an initial guess, we will take P(r) from
ann=3 polytrope.) Now fix a set of layer pressures
P P i ri ( )= D . The problem of minimizing F* has been reduced

to the problem of minimizing the linear objective function
n T P,
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each of which is also linear in the n ia . The first set of
constraints ensures that the volume filling fraction is equal to 1
for each layer, where the molar mass ma and density T P, i( )ra
are assumed to be known for each phase. Equations (10)
constrain the global mole fractions x x...A NC, where, for
example, sAa specifies the number of A-type nuclei per formula
unit of the α phase. The reason for constraining mole fractions
rather than component masses is that the latter tends to cause
infeasibility problems for the Simplex solver. Finally, there is a
set of inequality constraints that guarantees the reality of the
interlayer Brunt-Väisälä frequencies g d dr( )( )w r r= - .
Thus, there is built-in stability against convective overturn of
adjacent layers, but note that it is still possible to have unstably
stratified material within a layer. As noted above, this problem
is straightforwardly solved using the Simplex method. For
number of variables N N 10L P

3~ –104, we use the high-
performace lp_solve routines.
So far we have considered the case of an isothermal WD. For

the special case T=0, the Simplex solution provides the layer
enthalpy per unit mass h n P n m0,i i i i( )å åm= a a a a a a and
layer density n m Vi i iår = a a a . In certain cases, one can
interpolate to obtain a smooth function h( )r , which can be
combined with the enthalpy-transformed stellar structure
equations (Lindblom 1992).2 In the nonrelativistic limit, these
read

dP

dh
, 12( )r=

dm

dh

r

Gm

4
, 13

4
( )p r

=
-

dr

dh

r

Gm
. 14

2
( )=

-

The reason for using the enthalpy transformation is twofold.
First, the total mass M, which we were not able to constrain in
the Simplex calculation, now enters as a boundary condition.
Second, if we simply used the layer masses M n mi iå= a a a
along with the discretized equations of mass continuity and

2 An issue can arise near a density discontinuity, where hi and ir obtained by
the above procedure describe a function h ( )r that is nonmonotonic. The stellar
structure calculation cannot then make use of the enthalpy transformation,
because the sign of Equation (14) is incorrect in the vicinity of the interface. A
density discontinuity occurs as a consequence of mismatched Zs (compare bcc
C and O in Table 1) but is made much more severe when there is also a
mismatch in neutron fraction (compare bcc O and Fe in Table 1). Fortunately,
for typical WD compositions, the neutron fraction is continuous (or nearly so)
across phase boundaries, and the issue of nonmonotonicity is avoided by
choosing a suitably large layer thickness—on the order of R 200 for He–C–O
and C–O–Ne compositions.
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hydrostatic equilibrium (the usual stellar structure equations) to
update the Pi, no information about the microscopic energy
scale would carry over. In other words, we could multiply all
the chemical potentials by 2 and get the same Pi. Equa-
tions (12)–(14) are to be integrated inward from the boundary
conditions P 0 0( ) = , m M0( ) = , and r R0( ) = . Unfortu-
nately, we have no a priori knowledge of the radius R that is
consistent with M and h( )r in the sense of the Oppenheimer–
Volkoff map (to use the language of Lindblom). We therefore
have to complete the mapping h M R,( ) ( )r  . A simple way
to accomplish this is by “aiming” the boundary condition r(0)
until the integration yields the physically correct behavior
dP dr 0= as r 0 . Approaching R from below, the solutions
are smooth and wellbehaved except at r=0 owing to a
singularity in Equation (14). A change of variable u r2=
removes this singularity, but we find no particular advantage to
working with the resulting transformed equations. Approaching
R from above generates sign changes, and the solutions are
generally chaotic. The qualitatively different behaviors in these
two regimes can be exploited to obtain R to arbitrarily high
precision. In practice, we minimize dP/dr at a fixed, small
fraction of the starting boundary condition r(0) (but see the next
paragraph for discussion of a special case). In this process of
“completing the map,” an updated pressure function P(r) is
obtained at no extra cost. Layer pressures are reassigned and
input to the Simplex calculationand the process iterated. One
choice of convergence criterion is that successive iterations
produce stellar radii that are the same to within a tolerance of

R10 6-
—typically this criterion is met within just a few

iterations. Another choice is that radial positions and
thicknesses of phase strata (as fractions of R) are static to
within the resolution set by the number of simulation layers—
typically this occurs after just one iteration.

The main type of numerical error incurred is of the following
nature. In the first iteration, integration of Equations (12)–(14)
never proceeds past the point for which we have tabulated hi, ir
data available to interpolate within. This is just a consequence
of having used the polytrope initial guess. In subsequent
iterations, however, we are sometimes forced to make a choice:
carry out the integration past the highest tabulated hi, replacing
interpolations with extrapolations, or simply terminate the
integration when interpolations become impossible, using the
current value of dP/dr in the aiming procedure discussed
above. We choose the second option. The miminization
problem within the aiming procedure is, in these cases,
somewhat illdefined, tending to generate some numerical
noise that is expressed in the layering diagram near r R 0= .
For this reason we present layering diagrams as they appear
after the first iteration, noting that changes to the layering
diagram are already nearly imperceptible by the second
iteration, save for an increase in the level of this numerical
noise.

6. EQUILIBRIUM-LAYERING RESULTS

The previous section described a method of determining the
radial positions and amounts of phase strata in a WD with fixed
mass and overall composition, in particular, strata composed of
the new multicomponent crystal structures. Using this method,

we computed the T=0 equilibrium phase-layering
diagrams and radius-composition dependence of 1.0 solar
mass, 4He–12C–16O and 12C–16O–20Ne WDs. For each
composition, an initial guess corresponding to the polytrope
P 3.8 1014 4 3r= ´ cgsand stellar radius R R7.5 10 3= ´ -


was used, although the method appears to converge to the same
result if these starting values are adjusted within reasonable
limits. Figure 3 shows the result of the calculation. Evidently,
pure bcc phases make up the majority of the stellar interior,
despite the multicomponent structures being more efficiently
packed. Since multicomponent phases tend to show up at
interfaces, we refer to them as “interphases.” In the He–C–O
star, for example, δ-C4He4 and ò-C4He2 interphases are formed
between α-C and α-He, while β-OC appears at the low-density
part of the C–O boundary. For compositions near x 1He = , the
thinness of the carbon shell allows O-He interphases to form,
namely,γ-OHe2 and δ-O4He4. Compared to sharp bcc–bcc
interfaces, interphases offer free energy savings owing to
optimized crystal packing density, nearest- and next-nearest-
neighbor interactions, etc., arising from the extra compositional
degrees of freedom. Interphase thinness relative to bcc strata can
be understood from the gravitational contribution to the free
energy having a tendency to “pull apart” the different Z
components of the multicomponent phases. Competition
between these two energy scales apparently causes interphases
to become slightly thicker with depth. Consider, for example, δ-
C4He4 in the diagram with x x 1O C = . At x 0.5He = , only one
simulation layer (out of 200) is completely filled with this
compound, while an adjacent layer contains a mixture of δ-
C4He4 and α-He. This interphase gradually thickens with xHe

and by x 0.95He = , 13 simulation layers are completely filled,
another two are partially filled, and δ-C4He4 has squeezed out α-
C from the layering diagram.
An unexpected but apparently generic feature of the radius-

composition curves in Figure 3 is the existence of a shallow
minimum of the WD radius at an impure composition. Even as
the level of numerical noise increases with further iterations,
this minimum clearly persists. The cusps near x 0.8He = and
x 0.3Ne = may be a numerical effect rather than a physical one,
however, as they tend to smooth out upon further iterations.
One expects that the physics driving interphase formation in

our sample calculations for WDs would also drive interphase
formation in multicomponent NSCs. Complex accreted crusts,
with number of components  3, may well have a larger
number of interphases than the few that were found here for
three-component WDs. The amount of interphase material
relative to pure bcc material could also be larger. In addition, if
some components are present only in trace amounts, their
associated bcc strata may be thin or even nonexistent, enabling
mixing of the species above and below and formation of
interphase crystals containing more than two components.
These arguments would also apply to multicomponent WDs,
perhaps including some of those discussed in Barber et al.
(2012) andJordan et al. (2012).

7. EXTENDING THE EQUILIBRIUM CALCULATION: A
TOY MODEL OF NONEQUILIBRIUM PHASE LAYERING

A simple modification of the equilibrium-layering calcula-
tion enables a quasi-static settling calculation. If the settling
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species is X, an additional set of linear constraints

s n i i0 if , 15X i min ( )å= <
a

a a

enforces the minimum radius imin at which X can appear. This
minimum allowed radius can then be incrementally stepped
down, while the otherwise-unmodified equilibrium calculation
is carried out at each step. We carry out a test of the method by
settling M0.09  of O on a M0.91  He–C WD, and M0.1  of Ne
on a M0.9  C–O WD. Overall compositions are fixed at

x 0.95He = with x x 0.025C O= = and atx 0.07Ne = with
x x2 0.62C O= = , respectively; the final settled-out states are
given by Figure 3. (Admittedly, these are not particularly
realistic settling scenarios, but they serve as interesting test
cases, forcing the presence of an interface between the highest
and lowest Zs that otherwise does not happen in equilibriu-
m.)In both settling scenarios, the out-of-equilibrium star
contains one or more phases that do not appear in the final,
equilibrium stacking sequence. One function of these extra
phases is to serve as transient host structures for the settling

Figure 3. Equilibrium phase-layering diagrams for M1.0 , He–C–O WDs (top row) and M1.0 , C–O–Ne WDs (bottom row). Carbon–oxygen ratio is held at a fixed
value in each panel, and mole fraction He or Ne makes up the balance. The discrete color map indicates the stable phases after one iteration of the procedure described
in the main text. Further iterations produce no perceptible change in the layering diagram, save for an increase in the level of numerical noise. In cases where a given
layer contains a two-phase mixture of bcc and a more complicated structure (these are the only types of mixture to occur), the color map indicates the more
complicated phase. White plus signs give the stellar radius (right y-axis) as a function of composition, also after one iteration of the method. In the calculation of each
layering diagram, 200 layers were used.
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species: δ-O4He4 and γ-OHe2 are hosts for settling oxygen, and
θ-Ne2C4 is a host for settling neon. The phase-settling diagram
for the He–O–C star is fairly nontrivial, with as many as
seven distinct strata near i N 0.25Lmin » . A minimum in the
stellar radius appears around this point (as it also does in the O–
C–Ne settling calculation), indicating that the lowest-enthalpy
star is not the most compact star. Thisresult hints at the
prospects for new phenomena that are enabled by composi-
tional and structural heterogeneity that takes advantage of
the additional “chemical” degrees of freedom afforded by
multinary phases.

8. FINITE TEMPERATURE

Here we give a brief, qualitative discussion of some effects
that will become important at finite temperatures; a detailed
analysis is a subject for future work. At finite T, the chemical
potentials T P, i( )ma must be modified to account for phonons,
smearing of the Fermi surface, associated smearing of the
electron capture layers that will give an adjustment in
composition, and if α denotes an alloy or solution phase,
mixing entropy. Since the entropic part of these contributions
does not enter into the enthalpy, it is not possible to self-
consistently include thermal effects in our equilibrium phase-
layering method, which relies on the enthalpy transformation.
However, thermal effects could be included post hoc. For
example, one could compute the phonon free energy of an
interphase crystal such as δ-C4He4 along with that of the
equivalent phase-separated α-C and α-He crystals, add this
quantity to the T=0 free energy, and predict whether the
interphase tends to thicken or thin at finite T. A rough estimate
based on phases’ bulk moduli (K VdP dV= - ) suggests that
the thermal (phonon) correction to the free energy will tend to
increase the stability of the soft outer phase strata relative to the
stiff innner strata, likely shifting the interphases slightly toward
the stellar center. There is also a possibility for additional,
particularly soft interphases to appear in the stacking sequence,
if entropic terms are large enough to affect the phase
competition that winnows the phases of Table 1 down to the
phase layering in Figure 3. A phonon calculation would also
yield the elastic tensor and help characterize the degree of
elastic anisotropy as a function of depth, give a prediction for
the relative melting temperatures via the Lindemann parameter
(ratio of rms nucleus displacement to equilibrium lattice
spacing), and provide the effective oscillator frequencies
entering into pycnonuclear reaction rates. Finally, we note that
the simple mechanical stability criterion used here should be
replaced with the Ledoux criterion at finite T. See Reisenegger
(2001) for an application to multicomponent neutron stars.
Again, it is difficult to see how this more sophisticated criterion
can be built into the current method, but it could at least be

checked after including thermal effects in the manner
described.
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