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Here the buckling of inextensible rods due to axial body forces is mapped to 1D, nonrelativistic,
time-independent quantum mechanics. Focusing on the pedagogical case of rods confined to 2D,
three simple and physically realizable applications of the mapping are given in detail; the quantum
counterparts of these are particle in a box, particle in a delta-function well, and particle in a
triangular well. A fourth application examines the buckling counterpart of a quantum many-body
problem (in the Hartree approximation). Through a fifth application, given in the form of an
exercise, the reader can explore the surprising consequences of adding a second transverse
dimension to the rod buckling problem and imposing periodic boundary conditions. VC 2020 American
Association of Physics Teachers.
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I. INTRODUCTION

Energy quantization, normalization, and observable conse-
quences of relative phase differences are usually regarded as
concepts belonging to the realm of quantum mechanics. Yet
these same concepts also apply to elastic buckling instabil-
ities in thin rods, the theory of which dates back to the days
of Euler,1 but is not part of standard physics curriculum. Very
accessible introductions to buckling and its applications can
be found in the physics education literature,2–5 while a classic
treatise on the subject is given by Landau and Lifshitz.6

Several prior analogies have been made between elastic buck-
ling problems and quantum mechanical problems,7–12 but a
general and unifying framework for such analogies is
absent. In some of the above-mentioned works, the
wavefunction-like entity is said to be the shape (deflection) of
the buckled rod,7–9 in others the slope (tangent vector) of
the rod,10,11 and yet in another the curvature of the rod.12 All
place restrictions on the form of the potential energy-like
entity, it being either a constant,7–9 or of a harmonic oscillator
form,10,11 or a symmetric function with respect to the mid-
point of the rod.12 Here we present a formal mapping
between rod buckling in 2D and time-independent quantum
mechanics in 1D that is considerably more general than those
analogies suggested before. We find that if the wavefunction-
like entity is taken to be the slope of the rod, then the normal-
ization condition maps directly to an inextensibility constraint
for the rod, and the potential energy function maps to an
arbitrary body force acting parallel to the rod.

Let us start by briefly reviewing deformations of rods.6 An
elastic rod can deform by bending, by stretching or com-
pressing lengthwise, and by torsion, while still remaining a
rod. We will specialize to rods with small, smooth deforma-
tions confined to a plane (in other words, nearly straight rods
in 2D) and ignore torsion. If such a rod is oriented along x̂,
with transverse deflection u(x) much smaller than the rod’s
length, and axial strain !ðxÞ # 1, the deformation energy of
the rod is given by

H ¼ j
2

ð
dx

d2u

dx2

" #2

þ l
2

ð
dx !2: (1)

Here j is called the bending modulus and l is called the
stretching modulus. For a rod with an equiaxed cross section,

these scale as j & A2Y and l & AY, where Y is Young’s
modulus and A is the cross sectional area. Thus, if the rod is
very thin (A! 0), its resistance to stretching and compress-
ing is much greater than its resistance to bending.
Biopolymers, carbon nanotubes, and certain other filamen-
tous molecules are examples of very thin rods, and they are
often modeled by removing the second term in Eq. (1) and
replacing it with an inextensibility constraint. This is the
main idea of the “worm-like chain” (WLC) model,13–16

which we will again encounter in the following analysis.

II. FORMAL MAPPING

Suppose the rod is subjected to a net contact and/or body
force T(x) that acts parallel to x̂. To leading order, the axial
stress in the rod is TðxÞ=A and the axial strain is TðxÞ=l. If
the rod is in equilibrium, any small section of it must obey
the equation of local moment balance dM ¼ Tdu, where
MðxÞ ¼ ju00 is the bending moment. Dividing both sides by
the length of the section, dx, one obtains the third-order
equation of shearing force equilibrium,6

j
d3u

dx3
¼ TðxÞ du

dx
: (2)

Regions of T> 0 correspond to tension, while regions of
T< 0 correspond to compression. A typical application of
Eq. (2) is “self-buckling,” which refers to a vertical column
of height h that buckles under its own weight: TðxÞ
¼ 'rðh' xÞ, where r is the weight per unit length.2,6 By a
change of variable w ( du=dx, Eq. (2) takes the form of the
1D time-independent Schr€odinger equation,

j
d2w

dx2
¼ TðxÞw: (3)

This is similar in appearance to the second-order equation of
moment equilibrium obtained by integrating Eq. (2) for the
special case of constant T. That result, ju00 ¼ Tu, is com-
monly known as the Euler buckling equation. It should be
clear, however, that Eq. (3) is more general than the Euler
buckling equation, and it also has a different physical mean-
ing. Boundary conditions for Eqs. (2) and (3) typically
involve hinged or clamped rod ends, and solutions u(x) and
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w(x) to such boundary value problems describe unstable
equilibrium configurations of the rod, i.e., buckled
configurations.

Letting r be the 2D displacement vector that locates one
end of the rod with respect to the other, we define a
“projected length” of the rod as L ( jx̂ ) rj. In a buckled con-
figuration, the rod’s contour length LC exceeds L by an
amount

LC ' L ¼
ðL

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

p
' 1

% &
: (4)

Small, smooth deformations imply wðxÞ # 1 everywhere,
permitting Taylor expansion of the square root. Doing this
and rearranging terms, we have

LC ¼ Lþ 1

2

ðL

0

dx w2: (5)

Now an inextensible rod is one that cannot change its con-
tour length. Geometry dictates that any change made to the
projected length must be absorbed entirely into the buckling
amplitude, via the second term on the right-hand side of
Eq. (5). To see this, suppose the rod is initially straight with
L ¼ LC, and the projected length is subsequently reduced to
L ¼ LC ' DL; we must then have 1

2

Ð L
0 dxw2 ¼ DL. Defining a

relative change in projected length c ( DL=L# 1 (not to be
confused with the axial strain in the rod, which is zero), we
can write the inextensibility constraint as

ðL

0

dx

"
wffiffiffiffiffiffiffiffi
2cL
p

#2

¼ 1: (6)

So for an inextensible rod, i.e., a WLC, not only does the
slope w(x) satisfy a Schr€odinger-like equation, it also satisfies
a geometrical constraint that is reminiscent of normalization.

Introducing a rescaled slope WðxÞ ( wðxÞei/=
ffiffiffiffiffiffiffiffi
2cL
p

that is
dimensionally consistent with a 1D quantum mechanical
wavefunction, where / is an arbitrary constant phase angle,
Eqs. (3) and (6) become

d2W

dx2
' TðxÞ

j
W ¼ 0; (7)

ð
dx jWj2 ¼ 1: (8)

The integration is over the projected length of the WLC.
Evidently the problem of generalized buckling instabilities
in 2D WLCs maps to 1D, nonrelativistic, time-independent
quantum mechanics according to

wðxÞffiffiffiffiffiffiffiffi
2cL
p 7!wðxÞ; (9)

'TðxÞ
j
7! p2ðxÞ

"h2
: (10)

Here wðxÞ is a real, normalized eigenstate of the time-
independent Schr€odinger equation belonging to eigenenergy

E, and pðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E' VðxÞ+

p
is the semi-classical momen-

tum. Regions of compression of the WLC map to classical
regions: E' VðxÞ > 0, while regions of tension map to

nonclassical regions: E' VðxÞ < 0. A neutral “surface” of
the WLC maps to a classical turning point in the quantum
problem. A boundary condition in which the WLC is
clamped parallel to x̂ (but the clamp can slide transversely)
maps to a boundary condition in which w vanishes.

Further aspects of the mapping are obtained from energy
considerations. Let Hbend denote the first term on the right-
hand side of Eq. (1). Substituting w0 ¼ u00 and inserting
Eq. (9), we find

Hbend

jcL
7! hp̂

2i
"h2

; (11)

where hp̂2i ¼ "h2
Ð

dx jdw=dxj2 is the expectation value of
the squared momentum operator in the state w (after inte-
grating by parts). Notice that the choice jcL ¼ "h2=2m maps
Hbend directly to the expectation value of kinetic energy.
Next we observe that the work done on the rod by the body
force is U ¼ 'ð1=2Þ

Ð
dx Tw2. Inserting Eqs. (9) and (10)

reveals

U

jcL
7! hp

2i
"h2

: (12)

This time, the expectation value is of the squared semi-
classical momentum: hp2i ¼

Ð
dx p2jwj2. Thus, the statement

of energy conservation in the buckling problem, Hbend ¼ U,
is akin to multiplying the time-independent Schr€odinger
equation on the left by w, and integrating.

In Sec. III we examine four sample applications of the
mapping that span a wide range of qualitative behaviors. The
first two involve only contact forces, while the latter two
involve body forces.

III. APPLICATIONS OF THE MAPPING

A. Particle in a box

The buckling problem analogous to a particle in a 1D infi-
nite square well of width L is

jw00 ¼ 'jTjw; wð0Þ ¼ wðLÞ ¼ 0; (13)

where T ¼ constant. Physically, this represents a WLC com-
pressed from its endpoints; the ends are clamped but the
clamps are free to slide transversely. Since the eigenvalues
of Eq. (13) are compressive loads and the eigenfunctions
describe the WLC’s slope, we use the more descriptive
names “eigenloads” and “eigenslopes.” These are given by
jTnj ¼ n2p2j=L2 and wnðxÞ ¼ 2

ffiffiffi
c
p

sin ðnpx=LÞ, respectively,
and the first few are shown in Fig. 1(a). One can easily verify
that the eigenslopes satisfy the inextensibility constraint (Eq.
(6)) and the mapping to the normalized wn (via Eq. (9)). The
eigenvalues of the two problems are related by 2mEn="h2

¼ jTnj=j, consistent with Eq. (10).
What are the consequences of choosing jcL ¼ "h2=2m,

which maps the bending energy directly to the kinetic
energy, as mentioned above? One consequence would be
that the buckling force is jTnj ¼ En=cL, much larger than the
force required to adiabatically change the width of the well
'dEn=dL ¼ 2En=L. Is that problematic? No, it appears to be
reasonable behavior given that adiabatically changing the
width of the well corresponds to changing the projected
length of the already-buckled WLC. (Engineers consider
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buckling to be a mode of failure because a generic rod can
support a much greater axial load prior to buckling than after
it has buckled, and a WLC is no exception to this rule.)
Another consequence is thermodynamic in nature. A funda-
mental property of a WLC is its persistence length lp ¼ 2j=s
(in 2D), defined as the decay length of the tangent–tangent
correlation function ht̂ðsÞ ) t̂ðs0Þi ¼ exp ð'js' s0j=lpÞ. Here s
is the Boltzmann constant times temperature, and t̂ðsÞ is the
unit vector tangent to the WLC at distance s measured along
its contour length. Since the mapping is valid only for small
transverse deflections of the WLC, we must be confined to
the “stiff” regime L ! lp, i.e., the low temperature regime of

the WLC.14 Under this restriction, we would have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pclpL

p

¼ kth, where kth is the thermal average wavelength of the
particle in a box, i.e., a 1D ideal gas of density L'1. Inserting
the condition L ! lp into the last equation indicates the ideal

gas would be in the density regime L'1 "
ffiffiffiffiffiffiffiffi
2pc
p

k'1
th , where

k'1
th is known as the quantum concentration.17 However,

since c! 0, this is not actually a restrictive condition; the
cold WLC picture would hold regardless of whether the ideal
gas is in the quantum or classical regime (density above or

below k'1
th , respectively).

B. Particle in a delta-function well

The time-independent Schr€odinger equation,

'"h2

2m

d2w
dx2
' gdðxÞw ¼ Ew; (14)

can be recast as separate boundary value problems for each
half-space. For the positive half-space,

w00 ' k2w ¼ 0; wð1Þ ¼ 0; w0ð0Þ ¼ '1

R
wð0Þ; (15)

where k2 ¼ 2mjEj="h2; R ¼ "h2=mg, and the second boundary
condition comes from integrating Eq. (14) across an infini-
tesimal region centered on the origin. The sole bound state

solution is wðxÞ ¼
ffiffiffiffiffiffiffiffi
1=R

p
e'x=R, and the energy of this state

is E ¼ 'mg2=2"h2.

The analogous buckling problem has been described by
Misseroni et al.18 Clamp one end of a rod and constrain the
clamp to slide along a circular path having radius R, and
then pull on the other end (see Fig. 1(b)). Here the rod is an
infinitely long WLC, so the boundary value problem is

w00 ' q2w ¼ 0; wð1Þ ¼ 0; w0ð0Þ ¼ '1

R
wð0Þ; (16)

where q2 ¼ T=j > 0. The WLC will remain straight until the
tension reaches a critical value T ¼ j=R2, at which point it
will deflect and acquire slope wðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2cL=R

p
e'x=R. (Note

cL=R! 0 is implicit here.) Just as there is only one bound
state for the delta-function well, there is only one “buckling”
mode for the tensioned rod. The binding energy and buckling
force are related by E ¼ '"h2T=2mj, again consistent with
Eq. (10).

C. Particle in a triangular well

While the previous two applications involved only contact
forces (applied to the ends of the WLC and transmitted
throughout its length as required by force balance), this
application involves both contact forces and a body force.
First we consider the quantum problem of a particle in a
potential well VðxÞ ¼ gx for x> 0 and VðxÞ ¼1 for x< 0,
where g is a constant force. Physically, this could describe
an electron near a doped heterojunction,19 or a quantum
bouncing ball.20 Schr€odinger’s equation is given by

w00 ' 2mg
"h2

x' E

g

" #
w ¼ 0; wð0Þ ¼ wð1Þ ¼ 0: (17)

The eigenstates (plotted in Fig. 2(a)) are

wnðxÞ ¼
ffiffiffiffiffiffiffiffiffi
g=!0

p

jAi0ðanÞj
Ai

gx' En

!0

" #
; (18)

where Ai(z) and Ai0ðzÞ denote the Airy function and its
derivative, En ¼ janj!0,

!0 ¼
ðg"hÞ2

2m

( )1=3

; (19)

and an < 0 is the nth zero of the Airy function. The normaliza-
tion of Eq. (18) can be verified using an integral identity given
by Stern.21 The analogous elastic instability problem is a varia-
tion on the self-buckling scenario described earlier. Suppose a
massive WLC is oriented parallel to a uniform gravitational
field. It is both supported from its bottom (at x¼ 0) and sus-
pended from its top (at x¼L), such that it has a neutral surface
at some height x0 between 0 and L. The axial force is TðxÞ
¼ 'rðx0 ' xÞ. Both ends of the WLC are clamped, but the
clamps are free to slide transversely as in the previous two
applications. For L!1, the boundary value problem describ-
ing shearing force equilibrium is

w00 ' r
j
ðx' x0Þw ¼ 0; wð0Þ ¼ wð1Þ ¼ 0: (20)

This is identical to Eq. (17) when r=j ¼ 2mg="h2, and x0

¼ E=g. The classical turning points En=g in the quantum
problem become the neutral surfaces ðx0Þn in the elastic

Fig. 1. Modes of buckling instability analogous to particle-in-a-box eigenstates
and the delta-function well bound state, with all boundary conditions involving
a sliding clamp. Panel (a): the WLC shapes unðxÞ are shown in red (light gray
in the print version), and the derivatives of these shapes are the “eigenslopes”
wnðxÞ, shown in blue (dark gray in the print version). Notice that while the wn

have constant amplitude (assuming a fixed value of c), the un amplitude scales
as 1=n, as required by the inextensibility constraint. The compressive force
required to generate the nth buckling mode is the “eigenload” jTnj, and the
dashed lines indicate the spacing between eigenloads. Panel (b): the single
mode of buckling instability for a tensioned WLC whose left end clamp is con-
strained to slide along a circular track (Ref. 18). In both panels, the WLC
shapes and slopes are greatly exaggerated for clarity.
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problem (see Fig. 2(b)). The bottom supporting force
for the nth buckling mode is given by Tnð0Þ ¼ 'rðx0Þn
¼ 'janjðjr2Þ1=3, and this maps to the energy of the quantum
particle via p2

nð0Þ ¼ 2mEn, according to Eq. (10).

D. Many interacting particles

What is the buckling instability counterpart of a quantum
many-body problem? As a very basic starting point, we
show how a Hartree-like term22,23 could arise for a bundle14

of interacting WLCs. First we revisit Eq. (5) and notice that,
physically, w2ðxÞ=2 is the “excess length density,” i.e., the
fraction of the WLC’s total excess length LC ' L found
between x and x þ dx. Suppose the WLC had a charge uni-
formly spread over its contour length; the charge per unit
projected length would be &Cþ w2ðxÞ, where C is a con-
stant. Now consider a bundle of charged WLCs that are all in
buckled configurations (but not necessarily the same configu-
ration). If the charged WLCs have 2D electrostatic interac-
tions with one another, then the magnitude of the body force
on the ith WLC from all the others is

FiðxÞ &
X

j 6¼i

ð
dx0

h
Cþ w2

i ðxÞ
i

Cþ w2
j ðx0Þ

h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx' x0Þ2 þ ðuiðxÞ ' ujðx0ÞÞ2

q : (21)

(Here the subscripts label WLCs, not modes of instability.)
Since the u’s and w’s are small quantities, the transverse
component of the body force is small, and Eq. (21) is well
approximated by

TiðxÞ &
X

j 6¼i

ð
dx0

C Cþ w2
j ðx0Þ

h i

jx' x0j
: (22)

The divergent part of this integral can presumably be dis-
carded, and what remains is a Hartree-like contribution to
the total force T(x) exerted on the ith WLC.

IV. DISCUSSION

We have shown by a formal mapping, and by several
applications of the mapping, that key features of nonrelativ-
istic, time-independent quantum mechanics are also con-
tained within a certain class of rod buckling problems. In
these problems, the product of a WLC’s bending modulus j
and change in projected length cL plays the role of "h2=m,
and the spatial derivative of the WLC’s shape plays the role
of the normalized wavefunction. The statement of shearing
force balance for the WLC is analogous to the statement of
energy conservation that is embodied by the Schr€odinger
equation. As mentioned in the Introduction, other quantum-
buckling analogies can and have been made using second
and fourth-order elastic equations. However, these other
analogies do not appear to have the combination of general-
ity (in the sense of accommodating arbitrary V(x)) and depth
(in the sense that the dependent variable simultaneously sat-
isfies a normalization-like constraint) that is inherent to the
third-order equation of shearing force balance.

Generalization of the mapping to higher dimensions is
possible in at least three different senses: (1) the inextensible
rod can become an inextensible ribbon of arbitrary width
(measured perpendicular to the page in Figs. 1 and 2). This
does not change anything in the analysis we have already
done, and in fact, by assuming 2D electrostatics in the last
application, we have already made use of a ribbon concept.
(2) In the context of the first application, the inextensible rod
subject to uniaxial compression can become an inextensible
sheet subject to biaxial compression in the x-y plane, giving
rise to independent sinusoidal profiles in the x-z and y-z
planes. (3) The rod might live in 3D space so it has not one
but two transverse dimensions into which it can buckle. This
latter situation is particularly compelling because the
rescaled slope W(x) becomes a 2D vector WðxÞ, the compo-
nents of which play the role of the real and imaginary parts
of the 1D wavefunction. So the pedagogical mapping given
above is actually a special case of a more general isomor-
phism that exists between WLC buckling and 1D time-
independent quantum mechanics. Further details of this
isomorphism are given in the Appendix, along with a sug-
gested exercise.

What about time-dependence in the buckling problem—
does it resemble time-dependence in quantum mechanics?
The general equation of motion of a vibrating WLC is q@2

t u
¼ 'j@4

x uþ T@2
x u' bu, where q is the WLC’s mass per unit

length and b is the stiffness of a substrate that we have not
heretofore considered. In the special case of constant coeffi-
cients, taking a spatial derivative of this equation allows us
to replace u with W, and going to two transverse dimensions
further changes W into W. At first glance, the time-
dependent Schr€odinger equation i"h@tW ¼ 'ð"h2=2mÞ@2

x W
þVW bears no resemblance to the above equation of motion.
However, upon separating into real and imaginary parts, and
taking time derivatives to uncouple those parts, it transforms
into precisely the form we have written above. Shen Hui-
chuan gives another perspective on this analogy, which is
essentially to take the square root of the WLC equation of
motion,8 similar in spirit to how Dirac took the square root of
the Klein–Gordon equation,24 and to how Kane and
Lubensky took the square root of a dynamical matrix.25 From
this perspective, the reason for introducing the substrate term
is to complete a square. But again, the time-dependent anal-
ogy only holds for constant T, which corresponds to constant

Fig. 2. Particle in a triangular well maps to a variant of self-buckling in
which there is a supporting force at the bottom of a vertical WLC and a sus-
pending force at the top, and the sum of these two forces equals the weight
of the WLC. Panel (a): the first four normalized eigenstates, vertically
shifted to their respective energy levels, for a fixed value of g=!0. The poten-
tial V(x) is the diagonal gray line, plotted in units of !0. Panel (b): identical
to left panel, but rotated 90-. Here the blue lines (dark gray in the print ver-
sion) are the WLC slopes wnðxÞ, where n indexes the mode of buckling
instability. The corresponding WLC shapes are shown in red (light gray in
the print version) and found by numerical integration as un ¼

Ð
dx wn. As

before, the slopes and shapes are exaggerated for clarity, and the boundary
conditions involve sliding clamps. Above the diagonal grey line, the WLC is
in tension, and below the line it is in compression.
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V, so we should be cautious in extending the claim of isomor-
phism to time-dependent phenomena.

Other questions one could ask include: what would be the
quantum analog of a substrate term in the time-independent
buckling equation? What would be the elastic analog of an
exchange term in the many-body problem? Is it possible that
an intractable problem on one side can be mapped to a less
difficult or more intuitive problem on the other side? This
work establishes a theoretical foundation, and provides sev-
eral intuition-building examples, from which further such
questions can be addressed.
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APPENDIX: ROD BUCKLING IN 3D, AND A
SUGGESTED EXERCISE

If there is not one but two transverse dimensions into
which the WLC can buckle, the deflection becomes a vector
uðxÞ ¼ u1ðxÞŷ þ u2ðxÞẑ. Assuming the bending modulus is
isotropic, the statements of shearing force balance and inex-
tensibility (Eqs. (7) and (8), respectively) are replaced with

d2W

dx2
' TðxÞ

j
W ¼ 0; (A1)

ð
dx W )W ¼ 1; (A2)

where WðxÞ ¼ W1ðxÞŷ þW2ðxÞẑ ¼ 1=
ffiffiffiffiffiffiffiffi
2cL
p* +

ðdu=dxÞ.
(Compare Eq. (A1) to Landau and Lifshitz’s Problem 7 in
Sec. 21 of Chap. 11, up until the point where they assume
the bending modulus is anisotropic such that only one of the
transverse dimensions is relevant.6) The mapping given by
Eq. (9) becomes

W1 7!Re w½ +; (A3)

W2 7! Im w½ +; (A4)

where wðxÞ is now any complex, normalized solution of the
time-independent Schr€odinger equation. Equations (10)–(12)
remain valid for the case at hand. Thus, a WLC that buckles
in two transverse dimensions under the influence of a gener-
alized body force T(x) is isomorphic to time-independent
quantum mechanics in 1D.

As a fifth application of the mapping/isomorphism, we
suggest the following multi-part exercise in which the reader
can explore the buckling analog of a quantum particle on a
ring. In the latter problem, the “twisted” boundary condition
wðaÞ ¼ ei/wð0Þ, where a is the ring’s circumference and / is
a phase, keeps w,w continuous across the boundary. A gauge
transformation can remove the twist, but at the expense of
introducing a magnetic field, and this remarkable transforma-
tion is related to an underlying topology.26

(1) Show that the “kinked” WLC boundary condition
WðaÞ ¼ Rð/ÞWð0Þ, where R is a standard rotation
matrix and / is an arbitrary angle, keeps W )W continu-
ous across the boundary.

(2) Take TðxÞ ¼ 'jTj ¼ constant so that the buckling equa-
tion can be written as an eigenvalue equation

j
d=dx 0

0 d=dx

" #2

W ¼ 'jTjW; (A5)

with W a column vector. Show that substituting WðxÞ
¼ Rð/x=aÞ ~WðxÞ transforms the problem into

j
d=dx '/=a
/=a d=dx

" #2

~W ¼' jTj ~W; (A6)

where ~W has no kink. Hint: insert the identity matrix
Rð/x=aÞRð'/x=aÞ into a couple of strategic places.

(3) To get a physical interpretation of the transformed buck-
ling problem, map the configuration of the WLC to the
trajectory of a particle moving at constant velocity v in
the x-direction, with boundary conditions that are peri-
odic in time. Do this by putting ~W1 ! Cy; ~W2 ! Cz,
and x! vt, where C is a scale factor to get the dimen-
sions right. Describe the resulting physical system. If
there’s a magnetic field in the problem, what is its
orientation?

(4) Show that there are two special cases, / ¼ 0 and
/ ¼ 6a

ffiffiffiffiffiffiffiffiffiffiffi
jTj=j

p
, that allow the equations of motion to be

easily uncoupled. Obtain an expression for the winding
number n in each of these cases, and solve for the eigen-
loads jTnj. (Winding number in this context means the
integer number of orbits in the y-z plane per ring
traversal.)

(5) The special set of unkinked boundary conditions WðaÞ
¼ Rð2mpÞWð0Þ, where m ¼ 0;61;62;…, are indistin-
guishable from one another in the pre-transformed prob-
lem, but the m ¼ 0 and m 6¼ 0 versions correspond to
different physical mechanisms in the transformed prob-
lem. Argue that these different mechanisms give rise to
distinguishable particle trajectories, which in turn
implies m has observable consequences.
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