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Abstract

Studying animal toxin evolution requires sequences of these proteins and peptides, and transcript sequences
allow for the construction of cladograms and evaluation of selection pressures from nonsynonymous and
synonymous nucleotide mutation ratios. In addition, these translated sequences can be useful as custom
databases for peptide identifications within venoms and for better proteomic quantification. Obtaining
these transcripts is achieved by sequencing cDNA originating from venom gland tissue or venom. This
chapter provides the methodology for (1) targeted sequencing of transcripts from a single venom protein
family (RNA isolation and 30RACE [rapid amplification of cDNA ends]), (2) generation of a venom gland
transcriptome with next-generation sequencing (NGS) technology (de novo transcriptome assembly, toxin
transcript identification, quantification, and positive selection analysis), and (3) combined high-throughput
proteomics to identify secreted venom components. Transcriptomics has become fundamental for studying
toxin evolution, but it creates many challenges for scientists who are unfamiliar with working with RNA,
managing large NGS datasets and executing the required programs, particularly considering that there is an
overabundance of available software in this field and not all perform optimally for venom gland transcrip-
tome assembly. This chapter provides one pipeline for the integration of both low- and high-throughput
transcriptomics with proteomics to characterize venoms.

Key words Venomics, Transcriptomics, Proteomics, Toxin evolution, 30RACE, Next-generation
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1 Introduction

The definition of a venom is “a secretion, delivered from one animal
to another through the infliction of a wound, that contains molec-
ular compounds (mainly peptides and proteins) to disrupt normal
physiological or biochemical processes” [1]. Animal venoms are an
ideal model of adaptive molecular evolution, where phenotypes can
be directly linked to genetic change over time, whether in the form
of rapid gene gain and loss [2–5] or nucleotide substitutions within
gene sequences that alter toxin protein products [6–8]. Toxin gene
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duplications result in multigene families evolving through a “birth
and death” mode of evolution [9]. Analyses that involve toxin gene
transcription are useful to evaluate selection pressures on these gene
copies, addressing both toxin expression and diversity [10]. The
field of transcriptomics offers many technologies and methodolo-
gies for these explorations.

Once toxin transcript sequences are obtained, the translated
products can be predicted and structure modeling performed, as
well as toxin peptides synthesized or proteins recombinantly pro-
duced for characterization. Therefore, toxin transcript sequences
provide insight into not only sequence diversity, but also structure
and potential function of the protein products. Further, the collec-
tion of translated sequences can be used as a custom database for
proteomic identification and characterization of venoms, especially
in cases where venoms contain unknown, hypervariable, or novel
components that are not present in currently available databases.
This integrated “omic” approach has been termed “venomics”
[11, 12], and has been very successful at identifying and quantifying
distinct proteoforms within a venom [13–15]. In addition to this
chapter, Kaas and Craik [16] is a recommended review of this field.

There are two basic approaches to sequencing toxin transcripts:
(1) sequencing the collection of expressed toxin transcripts within
venom gland tissue (complete transcriptome) or (2) targeted ampli-
fication of toxin transcripts belonging to a select venom protein
superfamily. This chapter provides a methodology for isolating total
RNA from venom gland tissue or venom with yields useful for both
target transcript amplification and next-generation sequencing
(NGS) transcriptome assembly. For obtaining targeted venom pro-
tein transcripts, a protocol for 30RACE (rapid amplification of
cDNA ends), cloning, and Sanger sequencing is provided. For
obtaining a complete RNA-seq transcriptome, a bioinformatics
pipeline detailing read quality evaluation and processing, de novo
transcriptome assembly, toxin transcript identification, gene expres-
sion quantification, protein sequence prediction, and positive selec-
tion analysis is given. Further, the use of de novo transcriptome
assembly-predicted protein sequences as a custom reference for the
integration of high-throughput proteomics to characterize animal
venoms is discussed. These methods are applicable not only for
scientists interested in venom gland transcriptome and venom pro-
teome profiling, but also for investigations of transcriptomes/pro-
teomes of various animal tissues.

2 Materials

2.1 RNA Isolation 1. TRIzol (Invitrogen®) or RNAzol (Sigma Aldrich®); the RNA-
zol protocol will be different than provided here, but it is ideal
if a researcher wants to avoid the use of chloroform.
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2.2 30RACE (Rapid

Amplification of cDNA

Ends)

1. 30RACE system for rapid amplification of cDNA ends (Ther-
moFisher Scientific®).

2. Venom protein superfamily-specific primer: Refer to Note 1
for primer design.

3. Polymerase High Fidelity Supermix (ThermoFisher Scien-
tific®) or any other proofreading polymerase mix.

4. Wizard SV gel and PCR cleanup system (Promega®) or any
other PCR product gel purification kit.

5. pGEM-T Easy Vector System (Promega®) or a similar ligation/
vector system.

6. Escherichia coli DH5α competent cells (ThermoFisher Scien-
tific®) or any other competent cell line that can be used for
subcloning.

7. LB broth.

8. Agar plates: 1 μL per l mL agar of 50 mg/mL X-gal in DMF or
DMSO, 1 μL per l mL agar of 100 mg/mL ampicillin in
ddH2O, and 0.5 μL per/mL agar of 100 mM IPTG in
ddH2O, if using pGEM-T Easy Vector System and E. coli
DH5α competent cells; refer to Note 2 for agar additive
preparation.

9. Quick Clean 5 M Miniprep kit (Genscript®) or similar plasmid
purification kit.

2.3 Next-Generation

Sequencing (NGS)

Transcriptomics

2.3.1 NGS Library

Preparation and Data

Generation

1. TruSeq RNA Library Prep kit (Illumina®) for MiSeq, HiSeq, or
NextSeq platforms, or a similar kit matching the technology to
be used.

2. High-throughput computing resources are required for tran-
scriptomic work. Usually a GNU/Linux workstation is used,
as most software are for this platform. Multiple central pro-
cessing units (CPUs) are ideal (at least 8), but in the case of
transcriptome assembly lots of memory, both RAM and stor-
age, is vital. In terms of storage, one lane of Illumina HiSeq
data can be roughly 100–150 GB, and this can quickly be
doubled as multiple files are generated during assembly.
Additionally, large databases might need to be locally
installed for BLAST+ searches. Transcriptome assembly soft-
ware, such as Trinity [17], can be very memory intensive.
Roughly 1G of RAM must be available for each one million
reads for Trinity. A high-throughput computer with 256 GB
RAM and at least 1 TB hard disk drive (HDD) storage are
best. Gaining access to remote servers with this capacity is
also an alternative, and most universities and research institu-
tions have this available.
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2.3.2 NGS Data Quality

Checks

1. FastQC (http://www.bioinformatics.babraham.ac.uk/pro
jects/fastqc/) [18].

2. Trimmomatic (http://www.usadellab.org/cms/?
page¼trimmomatic) [19].

3. PEAR (https://sco.h-its.org/exelixis/web/software/pear/)
[20].

4. FLASH (https://ccb.jhu.edu/software/FLASH/) [21].

2.3.3 De Novo

Transcriptome Assembly

1. Trinity (https://github.com/trinityrnaseq/trinityrnaseq/
wiki) [17].

2. Extender [22], not open source.

3. VTBuilder [23], not open source.

4. EvidentialGene (http://arthropods.eugenes.org/
EvidentialGene/trassembly.html) [24].

5. Exonerate (https://www.ebi.ac.uk/about/vertebrate-geno
mics/software/exonerate) [25].

6. CD-HIT (http://weizhongli-lab.org/cd-hit/) [26].

2.3.4 Toxin Gene

Identification and

Expression Quantification

1. BLAST+ (https://www.ncbi.nlm.nih.gov/books/
NBK279690/) [27].

2. DIAMOND (https://ab.inf.uni-tuebingen.de/software/
diamond) [28].

3. SignalP (http://www.cbs.dtu.dk/services/SignalP/) [29].

4. TMHMM(http://www.cbs.dtu.dk/services/TMHMM/) [30].

5. RSEM (https://github.com/deweylab/RSEM) [31].

6. Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.
shtml) [32].

2.4 Toxin Selection 1. AliView (https://github.com/AliView/AliView) [33].

2. SeaView (http://doua.prabi.fr/software/seaview ) [34].

3. Jalview (http://www.jalview.org/) [35].

4. PartitionFinder (http://www.robertlanfear.com/
partitionfinder/).

5. Jmodeltest (https://github.com/ddarriba/jmodeltest2).

6. MEGA (https://www.megasoftware.net) [36].

7. PAML (http://abacus.gene.ucl.ac.uk/software/paml.html) [37].

8. DataMonkey server (http://www.datamonkey.org) [38].

2.5 High-Throughput

Proteomics Integration

1. Scaffold (https://www.proteomesoftware.com/products/scaf
fold/) [39], licensed.

2. ProteinPilot (https://sciex.com/products/software/pro
teinpilot-software), licensed.
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3. PEAKS (http://www.bioinfor.com/peaks-studio/) [40],
licensed.

4. SearchGUI (http://compomics.github.io/projects/searchgui.
html) [41].

3 Methods

3.1 RNA Isolation This procedure is for isolating RNA from either venom or venom
gland tissue. For RNA extraction from venom, the best results have
been achieved using freshly extracted venom, but RNA has also
been extracted from lyophilized venom after over 20 years of
storage [42]. It is important to follow proper procedures when
working with RNA to maximize yield and preserve RNA integrity
(see Note 3 for suggestions to optimize RNA work).

1. Add 100–500 μL of liquid venom or 2 mg of lyophilized
venom (as low as 1 mg and up to 50 mg of lyophilized
venom have been used successfully) to 1 mL TRIzol. If
venom gland tissue is used, approximately 10–100 mg of tissue
is added and homogenized in TRIzol (this can be done with
sterile tissue grinders).

2. Incubate sample for 5 min at room temperature.

3. Add 200 μL of chloroform.

4. Cap tightly and shake for 15 s.

5. Incubate for 2–3 min at room temperature.

6. Centrifuge sample at 12,000 � g at 4 �C for 15 min. Remove
the sample from the centrifuge, taking care not to disrupt the
layers that have separated.

7. Remove the aqueous upper phase (should be about 50% of the
total volume) by pipetting the solution out and into a new
RNase-free microcentrifuge tube. Do not remove any of the
organic layer or interphase layer—only the top layer.

8. Add 500 μL of 100% isopropanol to the aqueous layer in the
new tube.

9. Incubate at room temperature for 10 min.

10. Centrifuge at 12,000 � g at 4 �C for 10 min.

11. Remove supernatant, leaving RNA pellet (might not be visible
for venom, should be visible for tissue).

12. Wash pellet with 1 mL of 75% ethanol.

13. Centrifuge the tube at 7500� g at 4 �C for 5 min and pour off
supernatant.

14. Add 300 μL ice cold 100% ethanol and 40 μL 3 M sodium
acetate.
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15. Finger vortex and place in �20 �C overnight.

16. Centrifuge samples at 10,000 � g for 15 min at 4 �C.

17. Remove supernatant, invert over Kimwipe to remove all liquid,
and air dry for 10 min.

18. Add 10–16 μL of RNase-free water and gently vortex. SeeNote
4 for working with RNA from rear-fanged snake venoms that
will need an additional next step.

3.2 30RACE (Rapid

Amplification of cDNA

Ends): Targeting

Specific Toxin

Transcripts

30RACE is usually performed using protocols and reagents that are
supplied with kits. The 30RACE kit sold by ThermoFisher Scien-
tific® has been routinely used in our lab and the following protocol
details the use of this kit, but is slightly modified from the kit
manual (Fig. 1). Before beginning the procedure, make sure that
a heat block has been set to 70 �C and a water bath has been set to
42 �C. A 37 �C incubator is also needed for E. coli growth.

1. Adaptor primers, 0.5 μL (provided with the ThermoFisher
Scientific® 30RACE kit), are combined with 1–5 μg of total
RNA (if you are unsure of the concentration, use 5.5 μL), in a

Fig. 1 Protocol overview for targeting specific toxin transcripts for sequencing. Protocol overview shows each
step to be performed for targeted amplification of transcripts within a specific venom protein superfamily, as
completed in a recent publication [42]. It is modified from the 30RACE system for rapid amplification of cDNA
ends kit manual, sold by ThermoFisher Scientific, and includes additional steps for Sanger sequencing
preparation. Procedures discussed in the text are indicated by section numbers (red boxes)
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total volume of 6 μL in a 0.5 mL RNase-free
microcentrifuge tube.

2. Heat for 10 min at 70 �C and immediately chill on ice for
2 min.

3. Add the following to each tube (these can be mixed together in
a master mix and 3.5 μL of the master mix used for each tube);
all reagents are supplied with the kit:

1 μL 10� PCR buffer (200 mM Tris–HCl, pH 8.4, 500 mM
KCl)

1 μL 25 mM MgCl2

1 μL 0.1 M DTT

0.5 μL dNTP mix (10 mM each dNTP)

4. Mix components gently and centrifuge. Equilibrate each tube
at 42 �C for 2–5 min.

5. Add 0.5 μL of SuperScript™ II Reverse Transcriptase
(200 units/μL) to each tube (pipette this into the
solution well).

6. Incubate at 42 �C for 50 min (can be done in a water bath or in
a thermal cycler).

7. Terminate the reaction by incubating at 70 �C for 15 min.

8. Chill on ice and briefly centrifuge.

9. Optional: Add 0.5 μL of RNase H and incubate at 37 �C for
20 min to remove all traces of RNA in each sample. This step is
required for RNA from venom of rear-fanged snakes.

10. The following should be added to a small 0.2 mL PCR tube:

0.5 μL of sense primer (venom protein transcript specific, see
Subheading 2.2)

0.5 μL of antisense primer AUAP (Abridged Universal Ampli-
fication Primer; supplied by the kit, corresponds with kit
adapters)

1–2 μL of cDNA template, generated from reverse transcrip-
tion above (works best if it is a 1:10 dilution)

22–23 μL of Polymerase High Fidelity Supermix (this mix
includes the polymerase, dNTPs, and buffer)

Final total volume ¼ 25 μL (can also be adjusted to have a final
volume of 50 μL)

11. Tubes should be vortexed well and briefly centrifuged
(quick spin).

12. Place tubes in the thermal cycler with the program below for
touchdown PCR (seeNote 5). Annealing temperature will vary
depending on primers used, and refer to Note 6 for PCR
troubleshooting.
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94 °C 5 minutes 

94 °C 25 seconds

52 °C 30 seconds

68 °C 2 minutes

94 °C 25 seconds

48 °C 30 seconds

68 °C 2 minutes

68 °C 5 minutes

7X

30X

Hold at 4–10 �C (programing to hold at 10 �C is better for the
instrument).

13. Remove tubes from the thermal cycler and either store at
�20 �C or immediately run on a 1% agarose gel to view
products.

14. Excise band of appropriate size (predicted from transcripts
within the venom protein superfamily) from the 1% agarose
gel, and isolate the DNA using a PCR product gel purification
kit, such as Wizard SV gel and PCR cleanup system.

15. Perform ligation into cloning vector of choice. pGEM-T Easy
Vector System or similar can be purchased and has all needed
reagents for ligation. Add the following to a 0.5 mL nuclease-
free tube:

5 μL 2� Ligation buffer

1 μL pGEM-T Easy Vector

3 μL of PCR product DNA isolated from gel band

1 μL of DNA ligase

16. Mix the added reagents by pipetting.

17. Incubate at 4 �C overnight.

18. Bacterial transformation is then performed with the vector
ligation product. This procedure should be completed follow-
ing instructions given for the chosen competent cells pur-
chased. Agar plates with antibiotics or other additives, such as
IPTG, should be prepared according to competent cells and
vector being used. For E. coli DH5α competent cells, 5 μL of
ligation product is added to 50 μL of competent cells kept on
ice. Refer toNote 7 for general bacterial work suggestions that
should be followed from this point forward.
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19. Flick side of tube to mix competent cells with ligation product.
Do NOT vortex, as competent cells are very fragile.

20. Incubate tube on ice for 30 min.

21. Heat shock tube for 20 s at exactly 42 �C, and return to ice
immediately.

22. Incubate on ice for 2 min, and then add 1 mL of LB broth.

23. Incubate for 60 min in a shaking 37 �C warm water bath.

24. Plate 200 μL onto an agar plate, spreading the bacteria with the
use of sterile glass beads or loop. Make sure that the sample has
dried onto the plate before overturning for incubation.

25. Turn the plate upside down and incubate at 37 �C overnight
(about 16–18 h at most; otherwise plate could become
overgrown).

26. Place plate at 4 �C the following day to stop E. coli growth. Pick
E. coli colonies as soon as possible.

27. Pick E. coli colonies that demonstrate venom protein transcript
insertion into vector; this is done by colony blue/white screen-
ing (LacZ gene selection) for the pGEM-T Easy Vector Sys-
tem. Make sure that selected colony is white in coloration in
this case. Scoop the white colony up with a sterile pipette tip
and place into 2 mL of LB + ampicillin broth (ampicillin is 1 μL
per l mL broth). Each E. coli colony could be a different venom
protein transcript isoform. At least ten colonies should be
selected, but the greater number selected, the better chance
of obtaining all transcript isoforms [42].

28. Shake at 37 �C overnight.

29. In the morning, purify the plasmids of each E. coli colony with
the use of the Quick Clean 5 MMiniprep kit or similar plasmid
purification kit.

30. Send plasmids for Sanger sequencing. Usually, only around
200 ng is needed. Sequencing primers assigned will be based
upon the vector. For pGEM-T Easy Vector, T7 and SP6 can be
used as sequencing primers.

3.3 Next-Generation

Sequencing (NGS)

Transcriptomics:

Constructing De Novo

Transcriptomes

Next-generation sequencing technologies have now made it more
cost effective and less labor intensive to generate a venom gland
transcriptome. There are several different sequencing technologies
that fall under the broad term “next-generation sequencing”
(NGS). These include cyclic reverse termination sequencing (Illu-
mina®, which patented MiSeq, HiSeq, and NextSeq instruments),
sequencing by ligation (Applied Biosystems ABI SOLiD® system),
single-molecule real-time sequencing (Pacific Biosciences®), ion
semiconductor sequencing (Ion Torrent®), and Oxford nanopore®

technologies [43]. With the amount of sequence obtained from
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NGS technologies, especially from short-read sequencers, a kilo-
base of sequence costs a fraction of a cent. The extensive number of
overall sequences obtained results in the recovery of full-length
transcripts after assembly, including even lowly expressed tran-
scripts that were previously difficult to obtain with expressed
sequence tags (ESTs) [44, 45].

3.3.1 NGS Library

Preparation and Data

Generation

Preparing cDNA libraries for NGS also requires isolating total RNA
from venom gland tissue, usually at 4 days following venom extrac-
tion, when venom protein transcript expression is the highest [46];
extraneous muscle, blood, and/or connective tissues should be
trimmed away from gland tissues before proceeding. Of particular
importance is making certain that the tissue processed is of venom
gland origin, given the sensitivity of NGS and the presence of
venom protein homologs within other tissues [47–49]. The same
protocol as detailed above can be used to isolate total RNA for NGS
library preparation. High-quality (200 ng–1 μg) total RNA (refer
toNote 8 for RNA quality evaluation) is usually required as starting
material for NGS library preparation kits.

Given the fact that over 90% of isolated RNA will be ribosomal
RNA, it is important to avoid sequencing this RNA prior to the
downstream bioinformatics analysis. Enriching messenger RNA is
achieved either by using oligo d(T) beads or by selective removal of
rRNA. Currently, rRNA depletion is biased toward model organ-
isms (known rRNA sequences), and therefore is not a recom-
mended procedure for non-model organism NGS library
preparation.

Examples of NGS library preparation kits for MiSeq or HiSeq
sequencing technologies include the TruSeq RNA Library Prep kit
or NEBNext Ultra RNA Prep Kit for Illumina. It is important to
use kits specific for the sequencing technology to be used. For
Illumina® sequencing, these kits provide adaptors and primers
needed for proper binding to sequencing flow cells and for barcod-
ing if multiplexing (sequencing multiple samples on the same lane).
These kits can be purchased and directions followed to construct
in-house libraries, which usually can be completed within a day. On
the other hand, RNA can be submitted to sequencing facilities/
companies that will prepare the libraries for a fee.

When generating a complete transcriptome, several considera-
tions should be taken into account:

1. Sequencing depth: the number of reads needed to achieve
complete transcriptome complexity. The number has been
suggested to be around 30–50 million reads for a de novo
transcriptome assembly. However, considering that venom
protein transcripts are usually highly expressed, 8 million
reads has been suggested to assemble all abundant toxin gene
transcripts [50].
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2. Paired-end reads (PE) or single reads: sequencing a single end
of a transcript fragment, or both ends (paired end). It is best for
de novo transcriptome assemblies to have paired-end longer
reads (>150 bp) since this additional information can be useful
for assembly, and paired-end reads can be merged by such
programs such as PEAR (Paired-End reAd mergeR) [20] or
FLASH (Fast Length Adjustment of SHort reads) [21] to
create overall longer reads that also improve assembly.

3. Strand information: strand origin of a read. In order to quantify
gene expression accurately, it is important to retain the strand
specificity of origin for each transcript. This will allow one to
identify from which overlapping gene the RNA transcript has
originated.

There are many steps to produce a high-quality assembly, but
the assembly has many downstream applications (refer to https://
omicstools.com/rna-seq-categogy), such as evaluating toxin gene
expression, selection, or use of the predicted translated products as
custom databases for protein identifications (Fig. 2), so accuracy
should be a major goal. Command examples for some of the
programs discussed in the preceding text are given (Box 1), but
individual documentation for each program should be referenced.

Fig. 2 Protocol overview for venom gland transcriptomics. Protocol overview shows each step to be performed
for venom gland transcriptomic work, including the processing of next-generation sequencing reads, de novo
transcriptome assembly, gene expression determination, toxin transcript identification, positive selection
analysis, and integration of high-throughput proteomics with transcriptomics. Procedures discussed in the
text are indicated by section numbers (red boxes)
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Box 1 Abridged Pipeline Example Commands. A few command examples are given;
documentation for each program should be referenced for all command arguments
and parameters, and only examples are provided. All CPU/thread arguments should
be modified based on computing resources:
##############################
### FASTQC example command ###
##############################
SYNOPSIS

Usage:
fastqc seqfile1 seqfile2 .. seqfileN
fastqc [-o output dir] [--(no)extract] [-f fastq|bam|sam]
[-c contaminant file] seqfile1 .. seqfileN

fastqc RAWDATA_PAIR_1.fastq.gz RAWDATA_PAIR_2.fastq.gz -o
OUTPUT_DIRECTORY

###################################
### TRIMMOMATIC example command ###
###################################
SYNOPSIS

Usage:
PE [-threads <threads>] [-phred33|-phred64] [-trimlog
<trimLogFile>] [-quiet] [-validatePairs] [-basein <inputBase> |
<inputFile1> <inputFile2>] [-baseout <outputBase> | <outputFile1P>
<outputFile1U> <outputFile2P> <outputFile2U>] <trimmer1>...
or:
SE [-threads <threads>] [-phred33|-phred64] [-trimlog
<trimLogFile>] [-quiet] <inputFile> <outputFile> <trimmer1>...

java -jar trimmomatic-0.35.jar PE -threads 4 -phred33 RAWDATA_-
PAIR_1.fastq.gz RAWDATA_PAIR_2.fastq.gz OUTPUT_R1-paired.fastq
OUTPUT_R1-unpaired.fastq OUTPUT_R2-paired.fastq OUTPUT_R2-
unpaired.fastq ILLUMINACLIP:TruSeq3-PE-2.fa:2:40:15 SLIDINGWIN-
DOW:4:15 LEADING:20 TRAILING:20 MINLEN:50 HEADCROP:9

############################
### PEAR example command ###
############################
SYNOPSIS

Usage:
pear <options>

(continued)
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Standard (mandatory):
-f, --forward-fastq <str> Forward paired-end FASTQ file.
-r, --reverse-fastq <str> Reverse paired-end FASTQ file.
-o, --output <str> Output filename.

pear -f INPUT_R1-paired.fastq -r INPUT_R2-paired.fastq -o
OUTPUT_NAME

#############################
### FLASH example command ###
#############################
SYNOPSIS

Usage:
flash [OPTIONS] MATES_1.FASTQ MATES_2.FASTQ
flash [OPTIONS] --interleaved-input (MATES.FASTQ | -)
flash [OPTIONS] --tab-delimited-input (MATES.TAB | -)

flash -o OUTPUT_PREFIX -t 5 INPUT_R1-paired.fastq INPUT_R2-paired.
fastq -r 140 -f 350 -s 50 -d OUTPUT_DIRECTORY

###############################
### TRINITY example command ###
###############################
SYNOPSIS

#Usage:
# --seqType <string> :type of reads: (’fa’ or ’fq’)
#
# --max_memory <string> :suggested max memory to use by #Trinity where
limiting can be enabled. (jellyfish, sorting, etc)
#provided in Gb of RAM, ie. ’--max_memory 10G’
#
# If paired reads:
# --left <string> :left reads, one or more file names #(separated by
commas, no spaces)
# --right <string> :right reads, one or more file names #(separated by
commas, no spaces)
#
# Or, if unpaired reads:
# --single <string> :single reads, one or more file names, #comma-
delimited (note, if single file contains pairs, can use #flag: --
run_as_paired )
#
# Or,

(continued)
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# --samples_file <string> tab-delimited text file #indicating
biological replicate relationships.
#ex.
#cond_A cond_A_rep1 A_rep1_left.fq A_rep1_right.fq
#cond_A cond_A_rep2 A_rep2_left.fq A_rep2_right.fq
#cond_B cond_B_rep1 B_rep1_left.fq B_rep1_right.fq
#cond_B cond_B_rep2 B_rep2_left.fq B_rep2_right.fq
#

Trinity --seqType fq --max_memory 50G --left INPUT_R1-paired.fastq.
gz --right INPUT_R2-paired.fastq.gz --CPU 6 --full_cleanup --min_-
contig_length 100 --verbose

##############################
### CD-HIT example command ###
##############################
SYNOPSIS

Usage:
cd-hit-est [Options]

cd-hit-est -i INPUT_SEQUENCE -o OUTPUT_SEQUENCE -c 1 -n 8

##############################
### BLAST+ example command ###
##############################
SYNOPSIS

Usage:
blastx [-h] [-help] [-import_search_strategy filename]
[-export_search_strategy filename] [-task task_name] [-db
database_name]
[-dbsize num_letters] [-gilist filename] [-seqidlist filename]
[-negative_gilist filename] [-entrez_query entrez_query]
[-db_soft_mask filtering_algorithm] [-db_hard_mask
filtering_algorithm]
[-subject subject_input_file] [-subject_loc range] [-query
input_file]
[-out output_file] [-evalue evalue] [-word_size int_value]
[-gapopen open_penalty] [-gapextend extend_penalty]
[-qcov_hsp_perc float_value] [-max_hsps int_value]
[-xdrop_ungap float_value] [-xdrop_gap float_value]
[-xdrop_gap_final float_value] [-searchsp int_value]
[-sum_stats bool_value] [-max_intron_length length] [-seg
SEG_options]

(continued)
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[-soft_masking soft_masking] [-matrix matrix_name]
[-threshold float_value] [-culling_limit int_value]
[-best_hit_overhang float_value] [-best_hit_score_edge
float_value]
[-window_size int_value] [-ungapped] [-lcase_masking] [-query_loc
range]
[-strand strand] [-parse_deflines] [-query_gencode int_value]
[-outfmt format] [-show_gis] [-num_descriptions int_value]
[-num_alignments int_value] [-line_length line_length] [-html]
[-max_target_seqs num_sequences] [-num_threads int_value]
[-remote]
[-comp_based_stats compo] [-use_sw_tback] [-version]

blastx -query INPUT_SEQUENCE -db nr -max_target_seqs 3 -num_threads
8 -outfmt ’6 std stitle’ -out Blastx_nr_outfmt6

##############################
### RSEM example command ###
##############################
SYNOPSIS

Usage:
rsem-prepare-reference [options] reference_fasta_file
(s) reference_name
rsem-calculate-expression [options] upstream_read_file
(s) reference_name sample_name
rsem-calculate-expression [options] --paired-end upstream_read_-
file(s) downstream_read_file(s) reference_name sample_name
rsem-calculate-expression [options] --alignments [--paired-end]
input reference_name sample_name

rsem-prepare-reference [options] INPUT_SEQUENCE INPUT_SEQUENCE.
rsem.ref
rsem-calculate-expression --paired-end -p 5 --bowtie2 INPUT_R1-
paired.fastq INPUT_R2-paired.fastq INPUT_SEQUENCE.rsem.ref
INPUT_SEQUENCE.rsem.results

3.3.2 NGS Data Quality

Checks

The first step upon receiving sequencing reads is to conduct initial
quality checks (QC). These QC results can be obtained by loading
the read fastq files into the Java program FastQC [18]. This widely
used quality control tool for high-throughput sequence data pro-
vides a modular set of analyses that can give an impression of
potential problems during the library construction and the
sequencing run. The following parameters need to be evaluated,
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and reads filtered to match these criteria, to be used reliably in the
assembly:

1. Overall read quality should be greater than a quality score
of 20.

2. Adapter contamination should be absent.

3. Proper read length should be at least 36 bp.

There are several available open-source tools that can be used to
remove low-quality reads and adapter contamination, but Trimmo-
matic [19] is a commonly used software for this purpose and per-
forms well in that a sliding window is used to evaluate base quality
instead of just read quality averaged. Base quality is reported in a
Phred-like score, which is the log value of the error probability
(probability of incorrect base calling ¼ 10�Q/10; Q ¼ Phred
score). A quality score (Q) of 20 indicates that there is a 1 in
100 chance that the base call is incorrect. Because low-quality
bases are observed on read ends, when these are removed, a mini-
mum length is also set to keep reads long enough to be informative
for the assembly. The Trimmomatic package also contains common
adaptor sequences that can be selected for removal. These quality-
controlled and adaptor-removed filtered fastq files should then be
checked again by FastQC before they are used as input for tran-
scriptome assembly.

Paired-end reads can also be merged with programs such as
PEAR [20] or FLASH [21] and then used as input into assemblers
such as Extender, leveraging longer sequence lengths. However,
some assemblers do require the paired-end read information for
contig construction. Paired-end read merging can be used for
assembling small transcripts, as some animal toxins can be quite
small, such as those from arthropod venoms.

3.3.3 De Novo

Transcriptome Assembly

Venom gland transcriptomes are notoriously difficult to assemble
because of the abundance of transcript isoforms and the high levels
of expression of these isoforms. However, it is important that toxin
transcripts are properly assembled because there is exceptional
functional diversity in many toxin families, and minor differences
in sequence can greatly alter binding and overall activity.

Trinity [17] is currently one of the most popular de novo
RNA-seq assemblers, with over 2500 citations. Trinity partitions
RNA-seq reads into many independent de Bruijn graphs and with
parallel computing reconstructs transcripts from these graphs.
Three different software modules are used in Trinity contig con-
struction: Inchworm, Chrysalis, and Butterfly. Inchworm assem-
bles reads into unique sequences using a k-mer-base approach,
where each read is partitioned into smaller nucleotide strings of k
length. Next, Chrysalis clusters related reads and constructs a de
Bruijn graph for each cluster of related sequences. Finally, Butterfly
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analyzes the de Bruijn graphs and read pairings to report all plausi-
ble transcript sequences. Assembly run times are quite quick, usu-
ally completed within 24 h (approximately one-half to 1 h per
million reads). The Trinity software package contains many useful
Perl scripts, such as those for transcript quantification, differential
expression, coding region identification, translation (Transdecoder;
https://github.com/TransDecoder/TransDecoder/wiki), and
annotation (Trinotate pipeline; https://trinotate.github.io/).
However, it has also been noted that Trinity does not perform
well in distinguishing between highly similar paralogous or homol-
ogous transcripts [51], and because this is often the case with toxins
Trinity has been reported to miss toxin transcripts during assembly,
or to assemble only partial sequences [52]. Trinity has also been
reported to struggle with assembling highly expressed transcripts
[53], which is also often the case for toxin genes expressed in the
venom gland [54]. These limitations are likely due to the smaller
k-mer size (a fixed k-mer of 25) used for Trinity assemblies, because
small k-mers are better for assembling minimally expressed genes
while larger k-mers perform better for abundantly expressed
genes [55].

Extender [22], a Java program, was designed to improve upon
the issues observed using Trinity, and other de Bruijn graph assem-
blers such as ABySS [56] and Velvet [57], by utilizing a hashtag
table and extending contigs based upon long overlaps. Extender
also has faster run times, comparable to Trinity, but has smaller
RAM requirements. A larger k-mer size can be used for Extender
assemblies and because of an overlap versus a de Bruijn graph
algorithm, there are fewer alternative paths and therefore less
assembly errors are introduced. Extender has been used for multi-
ple venom gland assemblies and performs well when assembling
highly expressed transcripts within a venom gland [58]. Reads are
first merged with PEAR [20] or FLASH [21] and then used as
input into Extender. Extender also performs best when a large
number of reads are used, >30 million, but it does produce fewer
overall contigs in comparison to Trinity, likely excluding complete
transcript diversity.

Another assembler, VTBuilder [23], was also designed to
address the issues observed with assembling multi-isoform tran-
scriptomes, making it ideal for venom gland transcriptomes. The
VTBuilder assembly algorithm is more similar to reference-guided
genome assemblies. Reads are partitioned and a guide sequence is
generated from these reads. Reads are then mapped as scaffold-like
alignments and reconstructed as contigs representing the transcript
isoform diversity present. Unfortunately, the current VTBuilder
version only allows up to 5 M reads to be used for assemblies and
only works effectively with read lengths equal to or greater than
250 bp. With shorter reads, it has been noted as having
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performance equal to if not lower in comparison to Trinity when
assembling snake venom gland transcriptomes and an RNA spike-in
(RNA transcripts of known sequence and quantity used as a
control) [13].

Overall, given that each assembler has its own advantages and
disadvantages, using multiple assemblers might be the best
approach to achieve total and accurate transcript diversity. This is
quickly becoming the preferred method of transcriptome assembly,
considering that a transcriptome is a heterogeneous mixture of
transcripts of different sizes, GC content, complexity regions,
expression levels, etc., and one assembler algorithm is likely not
best for every transcript. There is also an advantage to generating
multiple assemblies with different parameters, such as k-mer values,
because the optimal k-mer value for an assembly will depend on the
read length, sequencing depth, and read error rate [55], especially
in cases where transcript abundances differ tremendously, as men-
tioned above. A disadvantage to using many different k-mer values
is that this has been found to increase the number of fusion/
chimeric transcripts when compared to single k-mer methods
[59]. Therefore, multiple assemblers and multiple parameters
should be explored in addition to quality control checks.

There are some pipelines that include such programs as CAP3
[60] that have been used to merge assembled contigs frommultiple
assemblers into a final transcriptome set. This DNA sequence
assembly program constructs multiple sequence alignments
between contigs and then generates a consensus sequence. It can
end up merging contigs from separate isoforms, emphasizing again
the importance of proper assemble quality control checks. Pro-
grams such as TransRate (http://hibberdlab.com/transrate/) can
assess the quality of a transcriptome assembly [61]. In order to
evaluate assembly performance, several metrics such as N50, aver-
age contig length, total assembled nucleotides, maximum contig
length, total number of contigs, and number of singletons have
largely been taken into consideration [62]. However, which metrics
actually reveal assembly quality is unclear, and standard quality
metrics commonly used are repurposed from genome assembly.

Further, because of the redundancy of using multiple assem-
blers, both redundancy removal and selection of the truest set of
transcripts will be required. There are several redundancy removal
software available, such as the CD-HIT suite software [26] or
Exonerate [25], and script pipelines like those provided by Eviden-
tialGene [24] identify high-quality transcripts. The EvidentialGene
script pipeline has been shown to perform optimally when dealing
with multiple transcriptome assemblies that include duplicated
gene copies, and this is a feature of venom gland tissue transcrip-
tomes. Moreover, the EvidentialGene pipeline has been found to be
ideal for working with multiple transcript isoforms because tran-
scripts are pooled into one super-set of sequences and then the
“best” set of transcripts from this set is selected based on the coding
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sequence and protein length, emphasizing transcript coding
potential.

3.3.4 Toxin Gene

Identification and

Expression Quantification

The best way to evaluate the quality of the final overall assembly is
by the identification of full-length transcripts for toxins known to
be present within the venom. In this sense, as mentioned above, the
Trinity software package provides a Perl script based on sequence
homology that could be used in order to decipher which toxin-
identified transcripts expand throughout the entire length of pro-
tein sequence. Hence, evaluating the quality of coding sequences,
such as if a full-length transcript starts with a methionine and ends
with a stop codon, is better than relying on a value like “N50,”
which is not very relevant to transcriptome assemblies, because a
higher N50 value and the presence of many long contigs can be the
result of misassemblies. However, it should also be noted that
excluding partially assembled transcripts can lead to underestima-
tion of venom complexity, as partial transcripts can contain valid
variants.

BLAST+ (Basic Local Alignment Search Tool) [27], which is
run from the command line of a computer (accessed through the
terminal for Unix-like operating systems), is commonly used for
toxin annotation and is based upon database searches. The data-
bases used include the nonredundant protein database available on
NCBI (National Center for Biotechnology Information) or the
UniProt database. Custom databases, such as a collection of
venom protein sequences, can be created and have been found to
be equally successful at the identification of toxin sequences, as long
as there exists homology to known toxins. There are also a few
specific toxin databases that have been assembled (reviewed in
[16]). It should be noted that it is possible to find toxin identities
using BLASTn that might be missed using BLASTx or BLASTp.
This was observed in the case of the Boiga irregularis venom gland
transcriptome, where Trinity assembled many partial transcripts
that showed untranslated region transcript bias and were unable
to be identified with BLASTx, but were identified as toxin tran-
scripts with BLASTn [14].

In this sense, given the fact that mobile elements such as saurian
SINEs and LINEs have been largely characterized in all major
lineages of squamate reptiles, it is best to mask repeat nucleotide
sequences with Repeat Masker (addressing http://www.
repeatmasker.org). The program makes use of Repbase (http://
www.girinst.org/repbase/), a comprehensive database of repetitive
element consensus sequences, reducing running times of the
BLAST annotation process.

BLAST+ can have very long run times, and with a full tran-
scriptome (20,000 plus contigs) and using a single workstation it
can easily run for a month (if not longer) to generate results. A way
to speed this up, besides assigning more processing cores to allow
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for parallel computing, is to split up files and run them separately,
and this is recommended. The program Diamond [28] has a much
faster algorithm, faster than the stand-alone BLAST+ by about
20,000 times, and is highly recommended for BLASTx or BLASTp
searches.

Regarding the annotation process, within databases submis-
sions are sometimes given the identification of “hypothetical pro-
tein,” “transcribed mRNA,” or even a mis-annotated description;
some may not have complete identities when they are submitted,
and some might even be partial sequences. Therefore, it is best to
report at least the top three BLAST hits in case the top hit given has
one of these non-informative labels or is incomplete. A filtering
round using a list of keywords (including the acronyms of all known
toxin protein families described so far) to distinguish putative snake
venom toxins from non-toxin (ribosomal, mitochondrial, nuclear,
etc.) proteins should be carried out over the BLAST hit results. The
main issue with using previous toxin datasets on an identity search
is that only toxin sequences similar to known toxins are identified.
Other programs, such as HMMER [63] with the Pfam database
[64] or InterPro [65], are sequence analysis programs that use
hidden Markov models to identify domains for unknown proteins,
and these can be useful to find unknown or novel toxins.

Venom components are secreted cell products and therefore a
signal peptide sequence should be present. This is a common
criterion used to identify potential toxins and is accomplished by
evaluating translated transcripts for signal peptides with SignalP
[29]. SignalP can be downloaded and run from a command line
for large FASTA files with many sequences. Protein sequences can
also be evaluated for transmembrane domains, which are suggestive
of non-secreted cell products, and this is done through the use of
the program tmHMM [30] that employs hiddenMarkov models to
identify membrane-bound protein regions. It is likely that if a
protein has membrane-bound regions, it is not a venom compo-
nent; however, there are no unequivocal certainties, because these
proteins could be posttranslationally processed or in the case of a
signal peptide there are other mechanisms of cellular export
observed as well [66]. To identify a venom protein transcript confi-
dently, venom gland transcriptomics must be combined with
venom proteomics (though posttranscriptional regulation may
result in no translated product).

Transcript abundances are usually determined based on reads
mapping to the de novo-assembled transcriptome and provide
within-sample normalization for feature-length and library-size
effects. They are reported as RPKM or FPKM (reads/fragments
per kilobase of exon model per million mapped reads) [67] and
TPM (transcripts per million), which is currently the most accepted
quantification method. In order to estimate transcript abundances
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from full-length transcripts, several software packages have been
developed. One of the most commonly used software packages for
this is RSEM (RNA-Seq by expectation-maximization) [31]. This
software package uses Bowtie/Bowtie2 [32] as the read aligner,
utilizing a Burrows-Wheeler index to keep its memory require-
ments small. Because multiple transcript isoforms are present for
many toxin genes, multi-mapping reads are frequently observed.
One should note that for mapping programs like Bowtie2 (the read
alignment program used for RSEM quantification), the search for
alignments for a given read is randomized. This means that if
Bowtie2 encounters a set of equally parsimonious alignments dur-
ing mapping, one of these alignments is randomly picked. This
allows for quick transcript quantification (RSEM run times are
usual less than 48 h on a single workstation, depending on read
numbers), but any transcript isoform quantification should be seen
as a measure of relative abundance only.

3.4 Toxin-Positive

Selection

Two primary modes of toxin evolution have been proposed: pur-
ifying and positive selection [68, 69]. It has been suggested that
positive selection is the dominant driver of snake venom evolution
[70], especially for highly expressed venom protein transcripts
[13]. Additionally, it has been observed that abundant venom
protein superfamilies experience weaker selective constraints
because of multiple gene copies, allowing for the accumulation of
deleterious mutations, and therefore also neutral evolution [71].
Even though there are multiple models that can be used to examine
selection pressures, it must be noted that for large venom protein
families that exhibit structural and functional diversity, toxin evolu-
tion can be complex.

The most common method of selection evaluation, and one of
the easiest to perform, is analyzing toxin transcripts for positive
selection. This method examines single-nucleotide polymorphisms
(SNPs) within codons, identifying if nonsynonymous or synony-
mous substitutions are occurring more frequently between homo-
logs. SNPs have been well documented in venom protein
transcripts and linked to toxin functional diversification [72]. The
ratio of nonsynonymous to synonymous substitutions, ω, can be
used to determine if selection is acting on the overall protein
and/or specific regions. Values of ω < 1 are suggestive of negative
purifying selection, ω ¼ 1 is suggestive of neutral evolution, and
values ω > 1 indicate positive selection.

There are several positive selection models that can be used.
Branch models allow the ω ratio to vary among branches in a
phylogeny to detect positive selection acting on particular lineages
[73], and site models allow ω ratios to vary for sites (codons)
[74]. There are also models that incorporate both branch and site
evaluations, allowing ω to vary for both sites within the protein and
across branches on the tree to detect positive selection affecting a
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few sites along particular lineages (foreground branches) [75, 76].
The most frequently used software for positive selection analysis is
PAML (phylogenetic analysis by maximum likelihood) [37], spe-
cifically the codeml module. Usually a series of models within
PAML are run, and model likelihood values are compared.

Toxin evolution evaluation has been incorporated into venom
gland transcriptome assembly publications because of the need of
transcript sequences to determine selection occurring for a toxin
family. It is of interest to identify which codons experience
increased mutation rates since positive selection has indeed been
linked to toxin-active sites and molecular surface residues [6, 72].
To set up sequences for a codeml analysis, it is ideal if orthologous
toxin sequences are used to compare sequence variation across
species and identify which coding regions are more variable. How-
ever, identifying orthologous sequences can be particularly chal-
lenging with venom toxins. Large multi-isoform toxin families exist
because gene duplications result in multiple paralogs, and different
paralogs can be evolving under different selection pressures. Cor-
rect orthologous sequences between species must be identified
from these gene families. Using BLAST identities, especially recip-
rocal BLAST outputs, potential orthologous toxin genes might be
able to be identified.

Once a set of toxin sequences are chosen, PAML will need a
nucleotide alignment file and tree file as input for codeml. The
alignment will need to be in in PHYLIP format with sequence
names identical to those present in the tree file. Each sequence
also needs to have the same number of characters. The tree file
will need to be in Newick format. Nucleotide models used for tree
construction will not matter for PAML, but users should make sure
that it is appropriate for their data set. PartitionFinder, Jmodeltest,
or MEGA [36] can be used for model selection. Tree construction
can be completed using either a maximum likelihood or a Bayesian
approach. A suggested open-source pipeline to use is either Aliview
[33] or Jalview [35] for the generation of a multiple sequence
alignment with either a Clustal or a MUSCLE alignment algo-
rithm, and SeaView [34] to construct a maximum likelihood tree
once nucleotide model selection has been performed. The align-
ment and tree files will need to be designated in the codeml control
file, as well as the resulting output file name and all models to be
run for comparisons.

Some commonly used PAML models include M0 (one ratio),
M1a (neutral), M2a (selection), M3 (discrete), M7 (beta), and M8
(beta&ω). Model M0 estimates a constant ω rate and is compared
to model M3, which allows ω to vary across sites. M1a is a model of
neutral evolution, where all sites are assumed to be under either
negative or neutral selection and is compared to M2a, a model of
positive selection. A Bayes empirical Bayes (BEB) approach is useful
for identifying specific amino acids under positive selection by
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calculating the posterior probabilities of a particular amino acid
belonging to a given selection class (neutral, conserved, or highly
variable). These BEB calculations are performed with the M8
model, run in comparison to theM7model. Once likelihood values
are generated for each model, comparisons can be made with
negative twice the difference in log likelihoods between each
model compared to a χ2 distribution. The length of time it takes
to run PAML codeml is dependent on sequence number and
models used, but it is usually completed within 24 h and can be
executed easily on a desktop or laptop computer.

Another software that has been successfully used for toxin
selection analysis is HyPhy [77]. HyPhy hypothesis testing using
phylogenies is similar to PAML in that it carries out likelihood-
based analyses on multiple alignments to find rates and patterns of
sequence evolution. HyPhy can be executed from the DataMonkey
server [38]. Tests for positive, negative, and episodic selection can
all be performed on the DataMonkey server [78].

3.5 High-Throughput

Proteomics Integration

Venom gland transcriptomes will then be used as databases for
locus-specific matching of proteomic data. Although some
top-down proteomics strategies are being developed for proteome
profiling, characterization of venoms is usually completed with a
bottom-up tandem mass spectrometry (MS/MS) approach, where
proteins are first digested with proteases such as trypsin (most
commonly used), chymotrypsin, or Glu-C, and then MS/MS pro-
duces spectra of fragmented singly charged peptide ions that can be
matched to databases for protein identification (peptide mass fin-
gerprinting) or can be used for de novo sequence determination
[79]. Collision-induced dissociation (CID) is the most popular
MS/MS technique for this type of analysis. This technique creates
a series of backbone fragmentations at the peptide bond, resulting
in b- and y-fragment ions, and using Mascot, SEQUEST, or other
search engines, databases are searched to identify unknown proteins
based on their peptide fragment spectra.

However, MS/MS peptide identification relying on available
online protein sequence databases can overlook unique protein
isoforms and/or be unsuccessful at recognizing novel toxins. Ani-
mal venoms can contain many different peptide and protein iso-
forms, and given that venoms experience high levels of variation
even within species, such as ontogenetic [80–83] and regional
venom variation [84–86], the use of public databases can be disad-
vantageous when attempting to characterize unexplored venoms.
Venom compositional variation has direct implications for antise-
rum development and efficacy, and proper identification of toxin
diversity is critical. Therefore, the use of an individual or species-
specific transcriptome can greatly improve venom proteomic
profiling.
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There are several programs that allow for the input of a custom
protein database, such as a translated venom gland transcriptome,
as a FASTA file. Some of the more popular software that have this
capability are listed in Subheading 2. Another important consider-
ation when using custom databases, such as a species-specific tran-
scriptome, is that there could be mis-assemblies or missing
transcripts within these databases, and therefore searches against
publicly available databases also are still advisable. Peptide to trans-
lated transcriptome matches assigned by these tools can also have
false positives, and therefore a false discovery rate (FDR) metric is
often used for confidence assessment [87]. False-positive screening
is performed with the inclusion of a decoy database, where incor-
rect “decoy” sequences are added to the search space. This decoy
database can be useful for the design of FDR filtering criteria [88].

An integrated transcriptomics and proteomics (venomics)
approach is ideal for not only more accurate and complete identifi-
cation of venom proteins, but also for better protein quantification
[89]. There are several label-free methods of MS/MS quantifica-
tion of venom components, such as normalized spectral abundance
factors (NSAF) [89–91], which normalizes for protein length, or
the use of an internal standard of known concentration that is then
used to determine unknown concentrations of proteins based upon
peptide intensities [92], similarly used for iBAQ [93]. The use of a
species-specific or even individual-specific translated transcriptome
database can aid in the quantification of venom components, such
as providing exact protein sizes for NSAF calculations. Some pro-
teomic programs can also generate their own quantification num-
bers, such as the emPAI (Exponentially Modified Protein
Abundance Index) number [94] from ProteinPilot and Mascot.
Additionally, other researchers have relied on the use of chromato-
gram peak areas for venom component quantification and perform
a reversed-phase high-performance liquid chromatography
(RP-HPLC) separation before the digestion and identification of
proteins [95]. In cases where peaks consist of multiple proteins, gel
densitometry is used to determine the abundance of different pro-
teins within a single peak. It is also important to note that although
the translated transcriptome is ideal as a species-specific database for
MS/MS peptide identifications, there is not always a quantitative
correspondence between the transcriptome and proteome.

Transcripts from an assembled transcriptome can be used to
obtain the full amino acid sequence of a protein. Using proteomic
methodologies (such as N-terminal sequencing and MS/MS de
novo sequence determinations from many peptide fragments) to
acquire full amino acid sequences of proteins can be labor intensive
and expensive. Additionally, with these approaches, complete pro-
tein sequences are not guaranteed, as some proteins are
N-terminally blocked, do not exhibit sequence for protease diges-
tion, or do not ionize well for MS/MS.
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A combined transcriptomic and proteomic approach is often
necessary to identify toxins, but the presence of a transcript alone
does not mean that it is a translated and secreted venom component
[96]. Because the basic definition of a venom is as a secretion, it is
therefore of great importance that venom proteomes are character-
ized, in addition to venom gland transcriptomes, to determine
which transcripts belong to secreted venom components. Venom
proteins originated from homologs that performed non-venom-
related, physiological functions within tissues [97], and misidenti-
fication of these physiological proteins and peptides as toxins could
distort our view of toxin evolution, especially when they are
included in cladistics and selection analyses. This integration of
transcriptomics and proteomics improves the accuracy of either
approach used alone.

4 Notes

1. Venom protein-specific primer needs to be designed from
venom protein transcripts. The best way to accomplish this, if
the target sequence is unknown, is by performing a multiple
sequence alignment with a collection of similar transcript
sequences. Venom protein superfamilies tend to have con-
served signal peptide regions and this region is ideal to design
primers to target multiple venom protein transcripts within a
single superfamily. It is best to incorporate some degenerate
nucleotide bases, such as Y (designated for C or T nucleotides)
andW (for A and T nucleotides), to improve amplification of all
transcripts within a superfamily. Refer to specific instructions
that companies have designated for ordering degenerate bases.
Usually, 1–4 degenerate bases should be used; more degenerate
bases will result in nonspecific binding and amplification. It is
also best to run PCR products using agarose gel electrophoresis
and excise the band belonging to the estimated transcript size,
as this will also help avoid nonspecific transcripts. Modahl and
Mackessy (2016) list several primers that have been successfully
used to amplify multiple transcript isoforms within a single
snake venom protein superfamily; this publication also has
details regarding primer design and PCR for 30RACE.

2. Make sure that X-gal, ampicillin, and IPTG are added after
autoclaving agar, and when agar has cooled to approximately
50 �C.

3. RNA is degraded by RNases that occur in the environment, on
skin, and in bacteria or mold that may be present on airborne
dust particles. RNase contamination is prevented by always
wearing gloves, only using plasticware that is labeled “RNase-
free” (treat any glassware with RNase inhibitors), using filtered
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pipette tips and micropipettes that are designated only for RNA
work, and cleaning the work area with RNase inhibitors, such
as RNase Away (ThermoFisher Scientific). Also, make sure that
all reagents used are molecular grade and are only used for
RNA work (this includes water, which must be treated before-
hand with DEPC). It is better to be overly cautious when
working to avoid environmental RNases than to be neglectful
and end up with degraded RNA. Next-generation sequencing
technology in particular requires high-quality RNA for library
input, and some sequencing centers will even refuse to
sequence RNA that falls below a RNA quality threshold.
RNA is also unstable, and experiments should be planned to
avoid multiple freeze-thaw cycles. RNA should be reverse-
transcribed as quickly as possible to avoid degradation. Any
long-term storage of RNA should be done at �80 �C and any
tissue that will be used later for RNA isolation should also be
stored at �80 �C but within a RNAlater stabilizing buffer for
best preservation. If tissue samples will be used within 1–-
2 months and are small, such as venom glands from arthro-
pods, they can be directly collected and stored in TRIzol. This
is actually recommended considering that it can be hard to
remove small samples from RNAlater. Isolated RNA should
be kept on dry ice during any transport.

4. In the case of total RNA isolated from rear-fanged snake
venom, a DNase I digestion (amplification grade; Invitrogen)
must be performed to remove all traces of DNA before begin-
ning the 30RACE procedure. Venoms collected from rear-
fanged snakes tend to have more DNA contamination that
will interfere with later steps.

5. Touch-down PCR is used for this procedure. This means that
the first set of repeated cycles has a higher annealing tempera-
ture to encourage specific primer binding, and the remaining
repeated cycles have a lower annealing temperature to increase
overall copy number. This is different than the nested PCR that
is described in the manual for the 30RACE system for rapid
amplification of cDNA ends (ThermoFisher Scientific). The
PCR method detailed in this chapter and modified from the
ThermoFisher Scientific kit protocol has been shown to be
successful [42].

6. Ways to troubleshoot PCR to improve amplification: (1) If you
had a total reaction volume of 25 μL, sometimes doubling
reagent volumes and increasing the total volume to 50 μL can
improve amplification. (2) Lower the annealing temperature.
However, a lower annealing temperature can result in an
increase in nonspecific PCR products. (3) Increase the number
of cycles. However, too many (>40) cycles increase the chance
of polymerase errors. (4) Increase the time associated with the
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68 �C extension, sometimes necessary with longer transcripts.
(5) Too much cDNA template can inhibit PCR. Try 1:2 or
1:10 dilutions of cDNA template before it is added to the PCR.

7. Make sure that when bacterial work is completed, precautions
are taken for all work to be conducted under sterile conditions.
All microcentrifuge tubes and pipette tips should be auto-
claved, as well as all prepared LB broth and agar. Any items
that come in contact with the bacteria must be discarded as
biohazard waste.

8. RNA quality can be determined using a Bioanalyzer. The RIN
(RNA Integrity Number) is calculated on a Bioanalyzer by eval-
uating the ratio between the ribosomal RNA (rRNA) subunits
28S and 18S [98]; this is used to establish the extent of RNase
sample degradation. A RIN of at least 7 or 8 is considered
acceptable. Spectrophotometry ratios measured on a Nanodrop
are also good evaluations of protein or chemical contamination
of isolated RNA. The 260/280 absorbance ratio of RNA should
be approximately 2.0 to be lacking significant protein contami-
nation, and the 260/230 ratio should also approximate 2.0–2.2
to demonstrate the absence of residual phenol or guanidine that
can be carried over from the RNA isolation protocol.
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