

Available online at www.sciencedirect.com

BBRC

Biochemical and Biophysical Research Communications 342 (2006) 1027-1033

www.elsevier.com/locate/ybbrc

Purification of a phospholipase A₂ from *Lonomia obliqua* caterpillar bristle extract

Carla Simone Seibert^a, Anita Mitico Tanaka-Azevedo^a, Marcelo Larami Santoro^a, Stephen P. Mackessy^b, Ricardo José Soares Torquato^c, Ivo Lebrun^d, Aparecida Sadae Tanaka^c, Ida Sigueko Sano-Martins^{a,*}

> ^a Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brazil ^b School of Biological Science, University of Northern Colorado, Greeley, CO, USA ^c Departamento de Bioquímica, UNIFESP, São Paulo, Brazil ^d Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil

> > Received 10 February 2006 Available online 21 February 2006

Abstract

Lonomia obliqua caterpillar bristle extract induces both direct and indirect hemolytic activity on human and rat washed erythrocytes, and provokes intravascular hemolysis in Wistar rats. Indirect hemolytic activity is assumed to be caused by a phospholipase A_2 (PLA₂) present in this extract, and this investigation was initiated in order to characterize this enzyme. Phospholipase A_2 activity of crude extract was inhibited by both a PLA₂-specific inhibitor (pBpb) and the metal ion chelator EDTA. *L. obliqua* PLA₂ was purified by liquid chromatography from the crude bristle extract and had a molecular mass of 15 kDa and a pI of 5.9; its N-terminal sequence showed high homology to a sequence of a putative PLA₂ obtained from a cDNA library of *L. obliqua* bristles, and it is tentatively placed among Group III phospholipases A_2 . This enzyme was stable at 4 °C, sensitive to higher temperatures, and its maximum catalytic activity was at pH 8.0. *L. obliqua* PLA₂ induced hemolysis only when incubated with exogenous lecithin. Thus, the PLA₂ purified herein appears to be responsible for the indirect hemolytic activity of the crude bristle extract. © 2006 Elsevier Inc. All rights reserved.

Keywords: Lonomia obliqua; Phospholipase A2; Indirect hemolysis; Erythrocytes; Intravascular hemolysis; Caterpillar; Lecithin; Chromatography

Envenomation of humans resulting from contact with *Lonomia obliqua* caterpillars has been investigated since the outbreak of several cases in southern Brazil in 1989. Hemorrhagic disturbances are frequently observed and are characterized by a consumptive coagulopathy followed by secondary fibrinolysis [1]. Moreover, hematuria, anuria, oliguria, and renal failure [2–6] have occurred in several cases, and cases of intravascular hemolysis have also been reported during human envenomation [7,8]. Rats envenomed experimentally by *L. obliqua* bristle extract develop hemostatic disturbances and intense intravascular hemoly-

sis [9] similar to those observed in human envenomations [10,11]. In vitro tests showed that direct and indirect hemolytic activity occurred when washed human and rat erythrocytes were incubated with crude *L. obliqua* bristle extract [12]. Intravascular hemolysis and indirect hemolytic activity have been ascribed to the presence of a phospholipase A₂ (PLA₂) in such extract [9,12].

Phospholipase A_2 (EC 3.1.1.4) belongs to a group of enzymes that hydrolyze natural phospholipids, catalyzing the deacylation of 1,2-diacyl-*sn*-3-phosphoglycerides at position 2 and thereby releasing free fatty acids and lysophospholipids, which are potent membrane-active agents. Phospholipase A_2 's have been described in vertebrates (mammals, lizards, and many snake venoms) and insects (honeybees and wasps) [13–15]. To distinguish PLA₂'s,

^{*} Corresponding author. Fax: +55 11 3726 1505.

E-mail address: idasano@butantan.gov.br (I.S. Sano-Martins).

⁰⁰⁰⁶⁻²⁹¹X/\$ - see front matter @ 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.bbrc.2006.02.071

their structures have been organized into groups according to their sources, cellular location (secreted, cytosolic, and intracellular), molecular mass, amino acid sequence, and calcium dependence [13,14,16]. Secreted venom PLA₂s show a wide variety of toxic and pharmacological effects, such as neurotoxicity, cardiotoxicity, impairment of platelet aggregation, myotoxicity, and necrotizing, anticoagulant, hemorrhagic, hypotensive, edema-forming, and hemolytic activity [17–20].

Erythrocyte disturbances in human cases of contact with L. *obliqua* caterpillars may be due to PLA₂ activity, but this relationship has not been demonstrated unequivocally. The current study was undertaken to evaluate the role of L. *obliqua* caterpillar bristle PLA₂ in hemolysis, and we demonstrate for the first time that a specific PLA₂ is present in the bristle extract.

Materials and methods

Crude extract. Lonomia obliqua caterpillars were anesthetized with CO_2 and bristles were removed and maintained on ice. Phosphate-buffered saline (PBS), pH 7.4, at 4 °C was added to achieve a 10% final extract solution. Bristles were homogenized by shaking and then centrifuged to obtain a suspension [21] which was stored at -70 °C. Protein concentration of bristle extracts was determined colorimetrically [22], using bovine serum albumin as a standard.

PLA2 activity. PLA2 activity was determined colorimetrically [23], as modified by Santoro et al. [24], using SWIFT II software for Ultraespec 2100pro spectrophotometer (Amersham Biosciences, Sweden). Fifty microliters of the bristle extract or chromatography fractions was added to 1.5 ml of substrate reagent (100 mM NaCl, 10 mM CaCl₂, 7 mM Triton X-100, 0.265% soybean lecithin, and 99 µM phenol red, pH 7.6) in a cuvette at room temperature, and the decrease in absorbance (ΔA_{558nm}) was recorded for 5 min to calculate the maximum velocity (U/min) of reaction. One unit of PLA₂ activity was defined as the amount of enzyme necessary to give $\Delta A_{558nm} = 1/min$ at 558 nm. PLA₂ activity was initially tested at different concentrations (125-1000 µg/ml) of crude bristle protein extract. To test calcium dependence, 250 µg/ml bristle extract was added to different concentrations of CaCl₂ (0-20 mM) in substrate reagent. To test PLA2 inhibition, 250 µg/ml bristle extract was incubated with 0.1 mM p-bromophenacylbromide (pBpb) (Sigma, USA) or Na2-EDTA (0.2 or 2 mM) (Merck, Darmstadt, Germany) in 25 mM Tris-HCl, pH 7.6, at room temperature for 4 h [17]. Samples were then dialyzed in 10 mM Tris-HCl, pH 7.6, and PLA₂ activity was assayed.

 PLA_2 purification from crude bristle extract. Crude extract (5.5 ml, 55.6 mg) was applied to a Sephadex G50 column (110 × 2.6 cm) (Amersham Biosciences, Sweden), previously equilibrated with chromatography buffer (10 mM Tris–HCl, 10 mM NaCl, pH 7.0). The flow rate was set at 12 ml/h and 3 ml fractions were collected, monitored for protein at 280 nm, and assayed as above for PLA₂ activity. Fractions that contained PLA₂ activity were pooled and applied to a Mono-Q HR 16/10 column (Amersham Biosciences, Sweden), equilibrated with 20 mM Tris–HCl, 50 mM NaCl, pH 7.0, at a flow rate of 2 ml/min. The column was washed with five volumes of equilibrium buffer and proteins were eluted with a linear gradient of NaCl (0–0.6 M) in equilibration buffer. Fractions containing PLA₂ activity were pooled and applied to a Superdex 75 column (60 × 2.0 cm), equilibrated with chromatography buffer at a flow rate of 1 ml/min. Fractions of 2 ml were collected and tested for PLA₂ activity.

Homogeneity. Protein concentration was determined as described by Lowry et al. [25], as modified by Markwell et al. [22], using bovine serum albumin as standard. Fractions with PLA₂ activity were reduced with 2-mercaptoethanol and electrophoresed in SDS–PAGE [26]. Gels were silver stained [27].

Effect of storage temperature and pH. The effect of storage temperature on activity was tested by incubating 3 μ g of L. obliqua PLA₂ at 4, 20, 30, 37, 40 or 50 °C for 30 min and then assaying PLA₂ activity. The effect of different pH on PLA₂ activity was evaluated by incubating 3 μ g of lyophilized samples in 10 mM Tris–HCl, 15 mM NaCl buffers, at pH levels ranging from 4.0 to 9.0, at 4 °C for 30 min.

 PLA_2 activity on human erythrocytes. Indirect and direct hemolytic activity of *L. obliqua* PLA₂ was determinated on human erythrocytes as described previously [12]. Briefly, indirect hemolytic activity was tested by incubating human erythrocytes with bristle extract (100 µg/ml) or chromatographic fractions (100 µg/ml) and 30 µg/ml egg lecithin (Sigma, USA) in 1.25 mM CaCl₂ for 1 h at 37 °C. Absorbances at 412 nm of test tubes were used to calculate the intensity of hemolysis. To test direct hemolytic activity, samples were incubated under the same conditions, but with no lecithin.

Molecular mass and isoelectric point. To confirm the molecular mass and determine the pI of the purified *L. obliqua* PLA₂, a sample from ion exchange chromatography was further purified on a Sephasil Peptide C18 column (Äkta System, Amersham Biosciences, Sweden). Proteins were eluted with a linear gradient of acetonitrile (0–60%) in 0.1% (v/v) trifluoroacetic acid. Fractions that contained PLA₂ activity were rechromatographed using a linear gradient between 36% and 37.2% acetonitrile. Molecular mass of *L. obliqua* PLA₂ was obtained by tricine–SDS–PAGE (16.5% resolving gel) [28]. Isoelectric focusing was performed at room temperature using precast polyacrylamide microgels (Phast Gel IEF 3-10) in a PhastSystem Apparatus (Amersham Biosciences, Sweden). A sample of PLA₂ (0.5 µg protein) was applied onto the gel using a 4-µl sample applicator. Calibration standards were between pH 3.5 and 9.3, and gels were silver stained [27].

N-terminal sequencing. In order to obtain the aminoterminal sequence of *L. obliqua* PLA₂, a sample from Mono-Q chromatography was electrophoresed as above, blotted onto PVDF membrane, and sequenced on an Applied Biosystems Procise protein sequencer.

Results

A dose-response curve was observed for PLA_2 activity in crude *L. obliqua* bristle extract, using soybean lecithin as substrate (Fig. 1A). This activity was augmented prominently by increasing CaCl₂ concentration in medium (Fig. 1B). PLA₂ activity in crude *L. obliqua* caterpillar bristle extract was inhibited 72% by 0.1 mM pBpb, 40% by 0.2 mM Na₂-EDTA, and 67% by 2.0 mM Na₂-EDTA (Fig. 2).

PLA₂ was purified by three chromatographic steps (Fig. 3). PLA₂ activity was detected in the first peak obtained from a Sephadex G50 column (Fig. 3A). Fractions containing PLA₂ activity were pooled and applied to a Mono-Q column (Fig. 3B), and then eluted with 0.4 M NaCl. Fractions with PLA₂ activity were applied in a Superdex 75 column (Fig. 3C); such preparation of PLA₂ was 75% pure as determined by densitometric analysis of SDS–PAGE electrophoresis (Fig. 3D).

A summary of the purification steps of *L. obliqua* PLA₂ is shown in Table 1. A purification of 15-fold was achieved with recovery of 3% of total PLA₂ activity. Thus, from 55.6 mg of crude extract protein, only 2 mg of PLA₂ was obtained. An increase in 40% total activity occurred after gel filtration in Sephadex G50, probably due to the dissociation of an inhibitor of this enzyme present in crude extract. When compared with the crude extract, a decrease in 50% of total PLA₂ activity was noted after chromatography on

Fig. 1. PLA₂ activity of crude bristle extract of *L. obliqua*. Dependence of activity on (A) extract protein concentration and (B) Ca^{2+} concentration in assay medium. Data are expressed as means \pm standard error of mean (*N* = 3). (B) A concentration of 250 µg extract protein/ml was used for all assays.

Fig. 2. PLA₂ activity present in crude bristle extract of *L. obliqua* was inhibited by 0.1 mM *p*-bromophenacylbromide (pBpb), 0.2 mM Na₂–EDTA, and 2.0 mM Na₂–EDTA after incubation at room temperature for 4 h. Data are expressed as means \pm standard error of mean (N = 3).

Superdex 75, but a 15-fold increase in specific activity was observed.

Lonomia obliqua PLA_2 is a thermolabile enzyme, and its activity decreases as temperature is raised. The optimal temperature and pH to maintain maximum activity of this enzyme were 4 °C and 8.0, respectively (Figs. 4A and B).

Indirect hemolytic activity was induced by crude bristle extract preparations and PLA_2 chromatographic fractions. Total hemolysis occurred exclusively in PLA_2 fractions obtained from gel filtration in Superdex 75 (Table 2).

To confirm the nature of the purified protein, fractions with PLA₂ activity obtained from ion Mono-Q HR 16/10 were pooled and subjected to reverse-phase chromatography on a C18 column (Fig. 5). Thus, 0.15% of total PLA₂ activity was recovered, with a purity grade of greater than 95% in tricine–SDS–PAGE (Fig. 5C). The molecular mass and isoelectric point of *L. obliqua* PLA₂ were 15 kDa and 5.9, respectively. The N-terminal sequence obtained from this protein was: FMMFPGTKWCGPD TTAXKXE, which is aligned with part of a putative PLA₂ predicted from a cDNA library obtained from *L. obliqua* bristles and tegument (GenBank Accession No. AY829845) [29] (Fig. 6).

Discussion

Secreted PLA₂s are important for digestion and immobilization of prey, and these enzymes are responsible for some of the physiological disturbances observed in humans following bee, wasp, spider, and snake envenomations [14,16,30–32]. PLA₂ activity has been reported in the crude *Euproctis* caterpillar bristle extract [33] and, more recently, in the crude caterpillar bristle extract of *L. obliqua* [12]. In the present study, a secreted PLA₂ was purified to homogeneity from the crude bristle extract of *L. obliqua*.

PLA₂ activity present in crude *L. obliqua* caterpillar bristle extract was dependent on a phospholipid substrate (lecithin) and Ca²⁺. Similar to other PLA₂ [14], calcium ions play an essential role in the catalytic mechanism of *L. obliqua* PLA₂, and Na₂–EDTA inhibited its PLA₂ activity, presumably by chelating Ca²⁺. pBpb also significantly decreased *L. obliqua* PLA₂ activity, further indicating a specific PLA₂. The effects of pBpb on *L. obliqua* PLA₂ strongly suggest that histidine is conserved in the active site of this enzyme [13]. Inhibition of enzymatic activity by pBpb is frequently observed in PLA₂s that possess a wellconserved active site, composed of a histidine and typically followed by an aspartic acid [31,34].

Lonomia obliqua PLA₂ is an extracellular enzyme, has a low molecular mass (15 kDa), and requires Ca²⁺ for its catalytic activity. Such characteristics may be used to classify it among Groups I, II or III of PLA₂ [14]. With limited sequence data, it is difficult to assign it to a specific group unequivocally. Nevertheless, since the N-terminal sequence of *L. obliqua* PLA₂ showed high homology to a predicted PLA₂ from *L. obliqua* bristle extract [29] and with other Group III PLA₂s [*Apis mellifera* (AAL30844), *Heloderma*

Fig. 3. Isolation of PLA₂ from *L. obliqua* caterpillar bristle extract. (A) Fractionation on a Sephadex G50 column (110 cm \times 2.6 cm). (B) Sephadex fractions containing PLA₂ activity were applied to a Mono-Q HR 16/10 column. (C) Active fractions were applied to a Superdex 75 column (60 cm \times 2.0 cm). (D) Protein profiles of reduced samples of crude bristle extract (Extract) and pooled PLA₂-containing fractions [Sephadex G50 (a), Mono-Q (b), and Superdex 75 (c)] following SDS–PAGE (12% resolving gel). MM, molecular mass standards. The arrow indicates the position of PLA₂.

 Table 1

 Purification of PLA2 from L. obliqua caterpillar bristle extract

	Protein		PLA ₂ activity			Yield
	Volume (ml)	Total protein (mg)	Activity (U/min)	Total (U)	Specific (U/mg)	(fold)
Extract	5.5	55.6	1.20	6.6	0.12	1
Sephadex G50	80	17.6	0.13	10.5	0.60	5
Ion exchange	28	4.2	0.17	4.8	1.14	10
Superdex 75	15	1.9	0.23	3.4	1.78	15

suspectum (P16354), and Rhopilema nomadica (P43318)], the enzyme purified herein is classified provisionally as a Group III PLA₂. In addition, an N-terminal motif which is highly conserved in Group III PLA₂s, PGTLWCG (residues 5–11), is also present in this *L. obliqua* PLA₂; several of these residues (W9, G11) are also involved in coordination of the Ca²⁺ cation in bee venom PLA₂ [35]. However, *L. obliqua* PLA₂ significantly differed in mass from PLA₂s found in other venomous insects, such as those of *Euproctis* caterpillars (100 kDa) and *Polybia paulista* wasps (115–132 kDa) [33,36].

Unlike *Apis mellifera* Group III PLA₂, which is a basic enzyme (p*I* 10.0), *L. obliqua* PLA₂ is acidic, with an isoelectric point of 5.9. Similar to *L. obliqua* PLA₂, the Group III PLA₂ isolated form *Heloderma horridum horridum* is also an acidic protein (p*I* 4.5) [37].

The purified PLA₂ showed a pH optimum of 8.0 which was stable when maintained at low temperature (4 °C). Most enzymatically active secretory PLA₂s show optimal activity at basic pH [19,38,39]. However, when stored at higher temperatures, enzymatic activity was gradually lost, indicating enzyme instability. This is in strong contrast to most secreted PLA₂s, which typically are very stable upon heating, and it suggests that the three-dimensional structure of *L. obliqua* PLA₂ is much less constrained than those of Group I and II PLA₂s, which are stabilized by seven disulfide bridges.

Lonomia obliqua PLA₂ induced exclusively indirect hemolytic activity, similar to activities observed for PLA₂s present in bristle extracts of *Euproctis chrysorrhoea* and

Fig. 4. Specific activity of *L. obliqua* PLA₂ following different conditions of incubation temperature (A) and pH (B). (A) Enzyme (3 μ g) was incubated at specified temperatures for 30 min and then assayed for activity. (B) Enzyme (3 μ g) was incubated in buffer of the appropriate pH for 30 min at 4 °C and then assayed. Data are expressed as means \pm standard error of mean (N = 3).

Table 2 Hemolytic activity of *L. obliqua* caterpillar bristle extract and PLA₂ purified fractions

Samples (100 µg/ml)	Hemolysis (%)
Crude extract	52.8 ± 11.94
Sephadex G50	87.7 ± 0.82
Ion-exchange	95.3 ± 3.72
Superdex 75	100.0 ± 0.00

Data are expressed as means \pm standard error of mean (N = 3).

Euproctis subflava caterpillars [33]. However, the PLA_2 of *Agelaia pallipes pallipes* wasp venom (agelotoxin) also induced direct hemolytic activity [38].

PLA₂ activity was also detected in caterpillar hemolymph (data not shown), suggesting that this enzyme may also have an important function in homeostasis of *L. obliqua*. However, in the bristles, this enzyme can induce both local reactions—such as pain and inflammation observed in humans and animals [10,40,41]—and systemic

Fig. 5. Reversed phase (C_{18} column) HPLC purification of PLA₂ obtained from Mono-Q HR 16/10 chromatography. (A) Elution was carried out using a linear gradient of acetonitrile (0–60%) in 0.1% (v/v) trifluoroacetic acid. (B) The fraction containing PLA₂ activity was rechromatographed using a linear gradient of 36–37.2% acetonitrile. (C) Tricine–SDS–PAGE of the material obtained from reversed-phase chromatography (B). MM, molecular mass standards.

1	11	
FMMFPGTKWC	GPDTTAXKXE	20
DDVDFKFILFPGTKWC	GSGDKA-KNY	64
GAFIM <mark>PGT</mark> LWC	GAGNAASDYS	21
G-LIK <mark>PGT</mark> LWC	G MGNNAETYD	20
IIY <mark>PGT</mark> LWC	GHGNKSSGPN	52
	1 FMMFPGTKWC DDVDFKFILFPGTKWC GAFIMPGTLWC G-LIKPGTLWC IIYPGTLWC	1 FMMFPGTKWC GPDTTAXKXE DDVDFKFILFPGTKWC GSGDKA-KNY GAFIMPGTLWC GAGNAASDYS G-LIKPGTLWC GMGNNAETYD IIYPGTLWC GHGNKSSGPN

Fig. 6. Alignment of the N-terminal sequence of the PLA₂ purified from *L. obliqua* bristle extract with a predicted PLA₂ from a cDNA library from *L. obliqua* bristles [29] and several other Group III PLA₂s (*Heloderma suspectum* [42], *Rhopilema nomadica* [43], and *Apis mellifera* [44]).

manifestations, such as intravascular hemolysis [7–9]. Redirection of regulatory/homeostatic proteins, from a regulatory role to a role in homeostasis disruption, is a motif commonly seen among snake venom components, and it appears to be present in insect venoms as well. To evaluate the role of this enzyme in the etiopathology of hemolysis that occurs in *L. obliqua* envenomations, we are currently investigating its activity on lipids and glycoproteins of erythrocyte cell membrane.

Acknowledgments

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP, Brazil (Proc. 00/11432-9 and 01/07643-7).

References

- [1] M. Zannin, D.M. Lourenço, G. Motta, L.R. Dalla-Costa, M. Grando, G.P. Gamborgi, M.A. Noguti, A.M. Chudzinski-Tavassi, Blood coagulation and fibrinolytic factors in 105 patients with hemorrhagic syndrome caused by accidental contact with *Lonomia obliqua* caterpillar in Santa Catarina, southern Brazil, Thromb. Haemost. 89 (2003) 355–364.
- [2] E.A. Burdmann, I. Antunes, L.B. Saldanha, R.C. Abdulkader, Severe acute renal failure induced by the venom of *Lonomia* caterpillars, Clin. Nephrol. 46 (1996) 337–339.
- [3] A.C. Duarte, J. Caovilla, I. Lorini, D. Lorini, G. Mantovani, J. Sumida, P.C. Manfre, R.C. Silveira, S.P. Moura, Insuficiência renal aguda por acidentes com lagartas, J. Bras. Nefrol. 12 (1990) 184–186.
- [4] A.C. Duarte, P.S. Crusius, C.A. Pires, M.A. Schilling, H.W. Fan, Intracerebral haemorrhage after contact with *Lonomia* caterpillars, Lancet 348 (1996) 1033.
- [5] H.W. Fan, J.L. Cardoso, R.D. Olmos, F.J. Almeida, R.P. Viana, A.P. Martinez, Hemorrhagic syndrome and acute renal failure in a pregnant woman after contact with *Lonomia* caterpillars: a case report, Rev. Inst. Med. Trop. São Paulo 40 (1998) 119–120.
- [6] G.P. Gamborgi, E.B. Metcalf, E.J.G. Barros, Acute renal failure provoked by toxin from caterpillars of the species, Lonomia obliqua Toxicon 47 (2006) 68–74.
- [7] M.S. Corrêa, R. Siqueira-Batista, A.P. Gomes, A. Franco-Barbosa, A.C. Verzola, F.R. Oliveira, F.A. Squeff, J.M. Motta-Leal-Filho, R.H. Tavares, D.S. Amorim, N.L. De-Maria-Moreira, S.S. Santos, Erucismo por *Lonomia* spp. em Teresópolis, RJ, Brasil: relato de um caso provável e revisão da literatura, Rev. Soc. Bras. Med. Trop. 37 (2004) 418–421.
- [8] C. Malaque, L. Andrade, G. Madalosso, S. Tomy, F. Tavares, A. Seguro, Hemolysis resulting from contact with a *Lonomia* caterpillar in southern Brazil: a case report, Am. J. Trop. Med. Hyg. (in press).
- [9] C.S. Seibert, M.R. Oliveira, L.R. Goncalves, M.L. Santoro, I.S. Sano-Martins, Intravascular hemolysis induced by *Lonomia obliqua* caterpillar bristle extract: an experimental model of envenomation in rats, Toxicon 44 (2004) 793–799.
- [10] E.M.A. Kelen, Z.P. Picarelli, A.C. Duarte, Hemorrhagic syndrome induced by contact with caterpillars of the genus *Lonomia* (Saturnidae, Hemileucinae), J. Toxicol. Toxin. Rev. 14 (1995) 283–308.
- [11] C.V. Reis, F.C.V. Portaro, S.A. Andrade, M. Fritzen, B.L. Fernandes, C.A.M. Sampaio, A.C.M. Camargo, A.M. Chudzinski-Tavassi, A prothrombin activator serine protease from the *Lonomia obliqua* caterpillar venom (LOPAP) biochemical characterization, Tromb. Res. 102 (2001) 427–436.
- [12] C.S. Seibert, E.M. Shinohara, I.S. Sano-Martins, In vitro hemolytic activity of *Lonomia obliqua* caterpillar bristle extract on human and Wistar rat erythrocytes, Toxicon 41 (2003) 831–839.

- [13] S. Chakraborti, Phospholipase A₂ isoforms: a perspective, Cell. Signal. 15 (2003) 637–665.
- [14] E.A. Dennis, Diversity of group types, regulation, function of phospholipase A₂, J. Biol. Chem. 269 (1994) 13057–13060.
- [15] R.M. Kini, Excitement ahead: structure, function and mechanism of snake venom phospholipase A₂ enzymes, Toxicon 42 (2003) 827–840.
- [16] E.A. Dennis, The growing phospholipase A_2 superfamily of signal transduction enzymes, TIBS 22 (1997) 1–2.
- [17] S.M. Serrano, A.P. Reichl, R. Mentele, E.A. Auerswald, M.L. Santoro, C.A. Sampaio, A.C. Camargo, M.T. Assakura, A novel phospholipase A₂, BJ-PLA₂, from the venom of the snake *Bothrops jararaca*: purification, primary structure analysis, and its characterization as a platelet-aggregation-inhibiting factor, Arch. Biochem. Biophys. 367 (1999) 26–32.
- [18] A. Fuly, A. Miranda, R. Zingali, J. Guimarães, Purification and characterization of a phospholipase A₂ isoenzyme isolated from *Lachesis muta* snake venom, J. Biochem. Pharm. 63 (2002) 1589–1597.
- [19] R. Doley, A.K. Mukherjee, Purification and characterization of an anticoagulant phospholipase A₂ from Indian monocled cobra (*Naja kaouthia*) venom, Toxicon 41 (2003) 81–91.
- [20] M.H. Toyama, D.G. Oliveira, L.O.S. Beriam, J.C. Novello, L. Rodrigues-Simioni, S. Marangoni, Structural, enzymatic and biological properties of new PLA₂ isoform from *Crotalus durissus terrificus* venom, Toxicon 41 (2003) 1033–1038.
- [21] W.D. Dias-da-Silva, C.M. Campos, L.R. Gonçalves, M.C. Sousa-e-Silva, H.G. Higashi, I.K. Yamagushi, E.M. Kelen, Development of an antivenom against toxins of *Lonomia obliqua* caterpillars, Toxicon 34 (1996) 1045–1049.
- [22] M.A.K. Markwell, S.M. Haas, L.L. Bieber, N.E. Tolbert, A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples, Anal. Biochem. 87 (1978) 211–222.
- [23] A. Lobo de Araújo, F. Radvanyi, Determination of phospholipase A₂ activity by a colorimetric assay using a pH indicator, Toxicon 25 (1987) 1181–1188.
- [24] M.L. Santoro, M.C. Sousa-e-Silva, L.R. Goncalves, S.M. Almeida-Santos, D.F. Cardoso, I.L. Laporta-Ferreira, M. Saiki, C.A. Peres, I.S. Sano-Martins, Comparison of the biological activities in venoms from three subspecies of the South American rattlesnake (*Crotalus durissus terrificus, C. durissus cascavella* and *C. durissus collilineatus*), Comp. Biochem. Physiol. C 122 (1999) 61–73.
- [25] O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193 (1951) 265–275.
- [26] U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 608–685.
- [27] H. Blum, H. Beier, H.J. Gross, Improved silver staining of plant protein, RNA and DNA in polyacrylamide gels, Electrophoresis 8 (1987) 93–95.
- [28] H. Schägger, G. von Jagow, Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Anal. Biochem. 166 (1987) 368–379.
- [29] A.B. Veiga, J.M. Ribeiro, J.A. Guimarães, I.M. Francischetti, A catalog for the transcripts from the venomous structures of the caterpillar *Lonomia obliqua*: identification of the proteins potentially involved in the coagulation disorder and hemorrhagic syndrome, Gene 355 (2005) 11–27.
- [30] F.O.S. França, L.A. Benvenuti, H.W. Fan, D.R. dos Santos, S.H. Hain, F.R. Picchi-Martins, J.L.C. Cardoso, A.S. Kamiguti, R.D. Theakston, D.A. Warrell, Severe and fatal mass attacks by 'killer' bees (Africanized honey bees-*Apis mellifera scutellata*) in Brazil: clinopathological studies with measurement of serum venom concentrations, Q J. Med. 87 (1994) 269–282.
- [31] J.A. Tischfield, A reassessment of the low molecular weight phospholipase A_2 gene family in mammals, J. Biol. Chem. 272 (1997) 17247–17250.
- [32] C.M.S. Málaque, J.E. Castro-Valência, J.L.C. Cardoso, F.O.S. França, K.C. Barbaro, H.W. Fan, Clinical and epidemiological

features of definitive and presumed loxoscelism in São Paulo, Brazil, Rev. Inst. Med. Trop. São Paulo 44 (2002).

- [33] M.C.J.M. Jong, F. Kawamoto, E. Bleumink, A.J. Kloosterhuis, G.T. Meijer, A comparative study of the spicule venom of *Euproctis* caterpillars, Toxicon 20 (1982) 477–485.
- [34] A.M. Soares, J.R. Giglio, Chemical modifications of phospholipases A₂ from snake venoms: effects on catalytic and pharmacological properties, Toxicon 42 (2003) 855–868.
- [35] K. Kuchler, M. Gmachl, M.J. Sippl, G. Kreil, Analysis of the cDNA for phospholipase A2 from honeybee venom glands. The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes, Eur. J. Biochem. 184 (1989) 249–254.
- [36] M.R. Oliveira, M.S. Palma, Polybitoxins a group of phospholipases A₂ from the venom of the neotropical social wasp paulistinha (*Polybia paulista*), Toxicon 36 (1998) 198–199.
- [37] B.P. Sosa, A.C. Alagón, B.M. Martin, L.D. Possani, Biochemical characterization of the phospholipase A₂ purified from the venom of the Mexican beaded lizard (*Heloderma horridum horridum* Wiegmann), Biochemistry 25 (1986) 2927–2933.
- [38] H. Costa, M.S. Palma, Agelotoxin: a phospholipase A₂ from the venom of neotropical social wasp cassununga (*Agelaia pallipes pallipes*) (Hymenoptera-Vespidae), Toxicon 38 (2000) 1367–1379.

- [39] D.G. Oliveira, M.H. Tayama, J.C. Novello, L.O.S. Beriam, S. Marangoni, Structural and functional characterization of basic PLA₂ isolated from *Crotalus durissus terrificus* venom, J. Protein Chem. 21 (2002) 161–168.
- [40] L.C. Bastos, A.B.G. Veiga, J.A. Guimarães, C.R. Tonussi, Nociceptive and edematogenic responses elicited by crude bristle extract of *Lonomia obliqua* caterpillars, Toxicon 43 (2004) 273–278.
- [41] H.W. Fan, A.C. Duarte, Acidentes por *Lonomia*, in: J.L.C. Cardoso, F.O.S. Frana, H.W. Fan, C.M.S.A. Málaque, V. Haddad (Eds.), Animais peçonhentos no Brasil: Biologia, Clínica e terapêutica dos acidentes, Sarvier, São Paulo, 2003, pp. 224–232.
- [42] A. Vandermeers, M.C. Vandermeers-Piret, L. Vigneron, J. Rathe, M. Stievenart, J. Christophe, Differences in primary structure among five phospholipases A₂ from *Heloderma suspectum*, Eur. J. Biochem. 196 (1991) 537–544.
- [43] A. Lotan, L. Fishman, Y. Loya, E. Zlotkin, Delivery of a nematocyst toxin, Nature 375 (1995) 456.
- [44] R.A. Shipolini, G.L. Callewaert, R.C. Cottrell, C.A. Vernon, The amino-acid sequence and carbohydrate content of phospholipase A₂ from bee venom, Eur. J. Biochem. 48 (1974) 465–476.