

Toxicon 44 (2004) 27-36

www.elsevier.com/locate/toxicon

Biochemical characterization of phospholipase A₂ (trimorphin) from the venom of the Sonoran Lyre Snake *Trimorphodon biscutatus lambda* (family Colubridae)

Ping Huang, Stephen P. Mackessy*

Department of Biological Sciences, University of Northern Colorado, 501 20th St., CB 92, Greeley, CO 80639-0017, USA

Received 3 December 2003; accepted 23 March 2004

Available online 18 May 2004

Abstract

Phospholipases A_2 (PLA₂), common venom components and bioregulatory enzymes, have been isolated and sequenced from many snake venoms, but never from the venom (Duvernoy's gland secretion) of colubrid snakes. We report for the first time the purification, biochemical characterization and partial sequence of a PLA₂ (trimorphin) from the venom of a colubrid snake, *Trimorphodon biscutatus lambda* (Sonoran Lyre Snake). Specific phospholipase activity of the purified PLA₂ was confirmed by enzyme assays. The molecular weight of the enzyme has been determined by SDS-PAGE and mass spectrometry to be 13,996 kDa. The sequence of 50 amino acid residues from the N-terminal has been identified and shows a high degree of sequence homology to the type IA PLA₂s, especially the Asp-49 enzymes. The Cys-11 residue, characteristic of the group IA PLA₂s, and the Ca²⁺ binding loop residues (Tyr-28, Gly-30, Gly-32, and Asp-49) are conserved. In addition, the His-48 residue, a key component of the active site, is also conserved in trimorphin. The results of phylogenetic analysis on the basis of amino acid sequence homology demonstrate that trimorphin belongs to the type IA family, and it appears to share a close evolutionary relationship with the PLA₂s from hydrophine elapid snakes (sea snakes and Australian venomous snakes). © 2004 Elsevier Ltd. All rights reserved.

Keywords: Amino acid sequence; Catalytic site residue; Calcium binding site residues; Colubrid snake; Duvernoy's gland; Elapidae; Enzyme; Evolution; Mass spectrometry; Phospholipase A₂; Phylogenetic analysis

1. Introduction

Snake venoms are complex mixtures of components with a diverse array of actions both on prey and human victims, and they are generally rich sources of water-soluble enzymes and polypeptides. Among these enzymes, the secreted phospholipases A_2 are widely distributed among various species, and those from the venoms of reptiles and the pancreatic tissues of mammals are particularly well characterized (Danse et al., 1997). Phospholipases A_2 are esterolytic enzymes which hydrolyze acyl-ester bonds at the *sn*-2 position of 1,2-diacyl-3-*sn*-phosphoglycerides and release fatty acids and the corresponding 1-acyl lysophospholipids (van Deenen et al., 1963; Kini, 1997). Especially noteworthy are various types of phospholipase A_2 (PLA₂) toxins which are neurotoxins and cardiotoxins (Lee, 1979; Dufton and Hider, 1983; Mukherjee, 1990), which have important pharmacological applications in the understanding of biochemical functions of human cells and diseases. Snake venom PLA₂s are enzymes primarily used for trophic and defense functions, and they exhibit a wide variety of pharmacological activities including neurotoxic, cardiotoxic, hemolytic, anticoagulant and myonecrotic actions, among others (Chang, 1985; Rosenberg, 1990; Hawgood and Bon, 1991; Yang, 1994; Zhang and

^{*} Corresponding author. Present address: Atrix Laboratories, Inc., 2579 Midpoint Drive, Fort Collins, CO 80525, USA. Tel.: +1-970-351-2429; fax: +1-970-351-2335.

E-mail address: stephen.mackessy@unco.edu (S.P. Mackessy).

^{0041-0101/\$ -} see front matter © 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.toxicon.2004.03.027

Gopalakrishnakone, 1999). By comparative sequence analysis, the venom PLA_2 enzymes from various snake families are found to be closely related to mammalian pancreatic PLA_2 enzymes (Kini, 1997).

Phospholipases A₂s are among the most extensively studied and characterized proteins (Yang, 1994; Tsai, 1997; Danse, 1997). However, the efforts on the isolation and characterization of venom PLA₂ enzymes have so far been directed toward the venoms of snakes from the families Elapidae and Viperidae (e.g. Kini, 1997). Little attention has been paid to the isolation and characterization of PLA₂s from the venom (= Duvernoy's gland secretions) of the polyphyletic family Colubridae, the world's largest snake family (Mackessy, 2002). As a result we know very little about the PLA₂s from colubrid snakes. The current study focuses on the isolation, purification and biochemical characterization of a phospholipase A2, termed trimorphin, from the venom of the colubrid snake Trimorphodon biscutatus lambda (Sonoran Lyre Snake). We developed a single-step HPLC procedure to purify the PLA₂ from this venom. The sequence of 50 amino acid residues from the N-terminus has also been determined, representing the first sequence data for any colubrid snake venom PLA₂.

2. Materials and methods

2.1. Materials

Ketamine (2-[2-chlorophenyl]-2-[methylamino]-cyclohexanone-HCl) was purchased from Fort Dodge Laboratories, Inc. (Ft. Dodge, IA, USA). Pilocarpine, 4nitro-3-(octanoyloxy) benzoic acid, trifluoroacetic acid and other biochemicals were purchased from Sigma Chemical Co. (St Louis, MO, USA). Novex Mark 12 molecular weight markers and precast tris–glycine gels were products of Invitrogen Corp. (Carlsbad, CA, USA). Protein concentration reagent and bovine γ-globulin were purchased from BioRad, Inc. (San Diego, CA, USA). All chemicals and solvents were of the highest quality commercially available.

2.2. Venom extraction

Venom from the Duvernoy's gland was extracted repeatedly from three adult *T. biscutatus lambda* (from Cochise Co., AZ, USA) using ketamine–HCl ($20 \mu g/g$ of body weight) and pilocarpine–HCl ($7.5 \mu g/g$ of body weight) as described previously (Hill and Mackessy, 1997). The subjects were first anesthetized with ketamine–HCl followed by parasympathetic stimulation with pilocarpine–HCl to increase the venom yield. The venom samples were collected using a 50 µl capillary tube placed over the enlarged rear maxillary fangs to minimize contamination by saliva. The secretion volume was estimated and recorded and the venom samples were

transferred to microcentrifuge tubes, immediately frozen and lyophilized, and stored frozen at -20 °C until used.

2.3. Protein assay

The protein concentration of the samples was determined by the method of Bradford (1976) as modified by BioRad Laboratories (San Diego, CA, USA). Venom samples were prepared at an apparent concentration of 4.0 μ g/ μ l. Bovine γ -globulin protein standards were also prepared at concentrations of 5, 10, 15, 20, and 30 μ g/ml.

2.4. Purification of Tb-PLA₂

Lyophilized crude venom of *Trimorphodon biscutatus* was dissolved in 0.1% trifluoroacetic acid (TFA) at a concentration of 10 mg/ml, followed by a 2-min centrifugation with a bench-top centrifuge and filtration with a 0.22 μ m syringe filter to remove any colloidal or particulate material. The samples were loaded on a reverse-phase C₁₈ HPLC column (Vydak column, 4.6 × 250 mm, Waters Empower HPLC System) and elution was performed with 0.1% TFA and a gradient of 15–75% buffer B (80% acetonitrile in 0.1% TFA) over 30 min at a flow rate of 0.8 ml/min. Protein fractions were collected with a Gilson FC 203B fraction collector (0.5 min) and related fractions (PLA₂) were pooled for further analysis.

2.5. Phospholipase A₂ activity assay

PLA₂ enzyme activity was determined by the method of Holzer and Mackessy (1996) using 50 µl of venom or 100 µl of fraction sample, using 4-nitro-3-(octanoyloxy) benzoic acid as substrate in the presence of Ca^{2+} . The assay buffer was 10 mM Tris-HCl (pH 7.5) containing 10 mM CaCl₂ and 0.1 M NaCl. The effect of the metal chelator diNa-EDTA was also evaluated using this method; enzyme (5 µg protein) and EDTA were incubated in buffer (lacking added calcium) for 30 min at RT prior to assay for activity. The pH profile of trimorphin (5 µg protein) was determined as above using the following buffers: 0.1 M sodium acetate (pH 5.0), 0.1 M MES (pH 5.5 and 6.0), 0.1 M PIPES (pH 6.5), 0.1 M HEPES (pH 7.0-8.0), 0.1 M Tris-HCl (pH 8.5), 0.1 M CHES (pH 9.0-10.0) and 0.1 M CAPS (pH 10.5-11.0). All of these buffers also contained 10 mM CaCl₂ and 0.1 M NaCl.

2.6. SDS-PAGE

The purity of isolated trimorphin was verified using SDS-PAGE with Novex precast gels (14% acrylamide Tris-glycine). Immediately prior to loading on the gel (2 and 5 μ g protein per lane), the samples were treated with 5% 2-mercaptoethanol, heated at 100 °C for 5 min, allowed to cool to room temperature and centrifuged. Crude venoms

(35 µg protein per lane; *T. biscutatus*) were also reduced. Gels were imaged using a Kodak DC-120 digital camera.

2.7. Reduction and alkylation

Purified trimorphin (approx. 250 μ g) was dissolved in 1.0 ml of 0.1 M Tris buffer, pH 7.5, containing 1% SDS and 0.1 M dithiothreitol (DTT). The mixture was boiled for 3 min and then incubated under nitrogen for 1 h at room temperature. An aliquot of 40 μ l of a freshly prepared 100 mM stock solution of 4-vinylpyridine was added to the solution and followed by incubation overnight under nitrogen at room temperature. The resultant mixture was transferred into washed dialysis tubing (3.5 kDa cutoff) and dialyzed against 1.0 l of 0.1% SDS for three changes.

2.8. Amino acid sequence analysis

The N-terminal amino acid sequence (first 50 residues) of the S-pyridylated PLA₂ enzyme was determined by automated Edman degradation using an Applied BioSystems 473a pulsed liquid-phase sequencer at the Protein Structure Core Facility, University of Nebraska Medical Center.

2.9. Mass spectroscopy

Mass spectroscopic analysis of the purified PLA₂ was carried out at MacroMolecular Resources, Colorado State University (Fort Collins, CO, USA). Native protein sample was dissolved in 0.2% formic acid in 50/50 acetonitrile/ water at a concentration of 1.5 mg/ml. The mass was determined by MALDI MS spectroscopy (Kratos, MALDI I equipment).

2.10. Protein sequence homology

Type classification of trimorphin was accomplished by comparison of key amino acid residues with characteristic residues of other venom PLA₂s (Kini, 1997). Comparative analysis of PLA₂ s was performed using MacClade 4 and PAUP (Phylogenetic Analysis Using Parsimony) 4.0 software with previously published protein sequence data (largely summarized in Kini, 1997) which is also available via the Internet at the National Center for Biotechnology Information's NR Protein Database (FASTA) (Pearson and Lipman, 1988). Species and toxin names are given in Appendix A. The cladogram tree was generated using MacClade 4.

3. Results and discussion

3.1. Venom production in trimorphodon

Due to low yields (relative to front-fanged snakes), venom samples were extracted repeatedly from adult snakes in captivity over a period of time. Larger snakes produced greater yields (Fig. 1A), and an exponential relationship exists between snake length and venom mass. This type of relationship has been observed both for other colubrids (Boiga irregularis: Mackessy, 2002) and for rattlesnakes (Mackessy, 1988; Mackessy et al., 2003). A strong linear relationship exists between venom volume and mass (Fig. 1B), and as has been observed previously (Hill and Mackessy, 1997, 2000), pilocarpine-induced venom is of low protein concentration (~48 mg solids/ml venom; 80-90% protein) relative to front-fanged snake venoms (e.g. rattlesnakes: 225-280 mg/ml, 90-92% protein; unpubl. data). However, the largest single yield, 20 mg, is comparable to yields of many species of smaller frontfanged snakes (pers. obs.).

Fig. 1. Venom yields for *T. biscutatus lambda* increase exponentially with snake length (A), and venom mass shows a close linear relationship with venom volume (B). Mass of solids (primarily protein) in the venom averages 48 mg/ml.

Fig. 2. Reverse-phase HPLC chromatogram of crude venom of T. biscutatus lambda. (*) Indicates the peak containing PLA₂ (trimorphin), which is well-separated from other fractions.

3.2. Purification of trimorphin

Like the venoms of most other snakes, the venom of T. biscutatus is a mixture of pharmacologically active proteins and polypeptides, including metalloproteases and phospholipase A2. In order to isolate and purify PLA2 from the crude venom more quickly and effectively, a single-step procedure using HPLC on a reverse-phase C18 column was used. The elution profile revealed nine major peaks, of which a single symmetrical peak with a retention time of ~ 29 min was found to be active PLA₂ (Fig. 2). Recovery of PLA₂ activity that was present in crude venom is 3.5% of total proteins, which is comparable to a 3.8% recovery rate achieved with a three-step isolation procedure (ammonium sulfate precipitation, DEAE-Sephacel, and reverse-phase HPLC) by Serrano et al. (1999) for PLA₂ from the venom of Bothrops jararaca. The homogeneity of the purified PLA₂, trimorphin, was established by SDS-PAGE and mass spectroscopy. After reduction by 2-mercaptoethanol, trimorphin appeared as a single band of 14 kDa (SDS-PAGE using Novex Mark 12 as protein standards; Fig. 3). To confirm the molecular weight estimate of native trimorphin, we carried out mass spectroscopic analysis, which revealed a single peak with a molecular mass of 13,996 Da (Fig. 4), closely agreeing with the result of SDS-PAGE. MALDI-TOF mass spectrometry has also been used to characterize complexity of colubrid venoms (Mackessy, 2002) and it provides a rapid tool for screening for smaller toxins as well.

Fig. 3. SDS-PAGE of trimorphin under reducing conditions. Lane 1: Novex Mark 12 protein standards. Lanes 2 and 3: RP-HPLC purified trimorphin, approximately 2 and 5 μ g protein; note lack of contaminant bands. Lane 4: Crude venom from *T. biscutatus lambda*, 35 μ g protein.

Fig. 4. Mass spectrum of trimorphin. A single peak with a molecular mass of 13,996 Da is seen; the small shoulder may represent minor isoforms, and the 6.99 kDa peak is the doubly charged ion of trimorphin. This data also shows that the single step isolation method produces a highly purified product.

3.3. Effect of EDTA and pH on enzyme activity

At concentrations above 50 μ M, the metal ion chelator EDTA completely inhibited PLA₂ activity, demonstrating the requirement of divalent cation for activity (likely Ca²⁺, as for other PLA₂s); the IC₅₀ is approximately 15 μ M. Fig. 5 presents the pH-activity profile of trimorphin. The enzyme shows a broad pH optimum (7.0–9.0) with an apparent peak of activity at pH 7.5. No enzymatic activity was detected at pH values below 5.5 or above 10.5. This profile is in general agreement with the values for other snake venom PLA₂s (e.g. Tu et al., 1970; Vidal et al., 1972; Joubert and van der Walt, 1975). The broadness of the pH optimum suggests that the microenvironment of active center residue His-48 is well protected from the intrusion of solvent. Specific activity of trimorphin at pH 7.5 (toward 4-nitro-3-(octanoyloxy) benzoic acid) is 27.7 nmol product formed/min/mg protein.

3.4. N-Terminal amino acid sequence

Trimorphin was reduced and pyridylethylated prior to sequence analysis. The N-terminal 50 amino acid sequence of trimorphin was determined and is presented (Table 1) in alignment with several selected type IA PLA₂s from *Laticauda semifasciata* (Chinese sea krait) pancreas, *Pseudonaja textilis* (eastern brown snake) venom, *Naja nigricollis* (African black-necked spitting cobra) venom, *Notechis s. scutatus* (Australian tiger snake) venom and bovine pancreas. The sequence comparison shows that trimorphin shares greatest sequence identity (40/50 residues, 80%) with a pancreatic PLA₂ from *L. semifasciata* (Fujimi et al., 2002), and a high degree of sequence homology with the group IA PLA₂ s, particularly the Asp-49 enzymes from several hydrophine venoms, is apparent. The cysteine at position 11, which is characteristic of the type IA PLA₂s, is conserved in trimorphin. The amino acid residues involved in Ca²⁺ binding (Tyr-28, Gly-30, Gly-32, and Asp-49) (Scott et al., 1990a,b) are also conserved in trimorphin. Asp-49 is essential for Ca²⁺ binding of PLA₂, and even the conservative substitution of Asp-49 \rightarrow Glu-49 resulted in a 12-fold decrease in Ca²⁺-binding affinity of the enzyme with a concomitant loss of catalytic activity (Li et al., 1994). The residue His-48, another highly conserved key residue in mammalian pancreatic and snake venom PLA₂s, is conserved in trimorphin. Together with Asp-49 and Ca²⁺ ion, His-48 is believed to play a key role in the catalytic activity of PLA₂ by serving as a proton acceptor and donor (Verheij et al., 1980). Introduction of a methyl group on the N-1 position of His-48 has resulted in a total

Fig. 5. pH profile of trimorphin PLA₂ enzyme activity toward synthetic substrate (4-nitro-3-(octanoyloxy) benzoic acid). Note the broad pH optimum between pH 7 and 9.

P. Huang, S.P. Mackessy / Toxicon 44 (2004) 27-36

32

Table 1 Alignment of N-terminal amino acid sequence of trimorphin with selected Group I PLA₂ enzymes

Enzyme	10	20	30
Trimorphin	NLYQFSNMIQ	CTIPGSDPLS	DYGNYGC Y C G
Laticauda semi GL16-1	NLVQFSNMIK	CTIPGSRPLL	DYADYGC Y CG
Textilotoxin C	NLIQFSNMIK	CTIPGSQPLL	DYANYGC Y CG
Notexin np	NLVQFSYLIQ	CANHGKRPTW	HYMDYGC Y CG
Nn-PLA ₂ (basic)	NLYQFKNMIH	CTVP-SRPWW	HFADYGC Y CG
Bovine pancreas PLA ₂	ALWQFNGMIK	CKIPSSEPLL	DFNNYGCYCG
	40	50	Reference
Trimorphin	YGGSGTPVDE	LLRCCQV HD D	Current study
Laticauda semi GL16-1	AGGSGTPVDE	LDRCCQTHDN	Fujimi et al. (2002)
Textilotoxin C	PG NNGTPVDD	VDRCCQAHDE	Pearson et al. (1993)
Notexin np	AGGSGTPVDE	LDRCCKI HD D	Halpert and Eaker (1976)
Nn-PLA ₂ (basic)	RGGKGTPVDD	LDRCCQVHDN	Yang and King (1980)
Bovine pancreas PLA ₂	LGGSGTPVDD	LDRCCQTHDN	Fleer et al. (1978)

Conserved functional residues are given in bold. Tyr-28, Gly-30, Gly-32 and Asp-49 are residues known to be involved in Ca^{2+} binding; His-48 is one of the key residues involved in catalytic activity of PLA₂; Cys-11 is characteristic of most Group I PLA₂. Laticauda semi. GL16-1, pancreatic precursor from *Laticauda semifasciata*; Textilotoxin C, from *Pseudonaja textilis* venom; Notexin np, from *Notechis s. scutatus* venom; Nn-PLA2 (basic), from *Naja nigricollis* venom.

loss of enzymatic activity in equine pancreatic PLA_2 , even though the binding of monomeric substrate and cofactor Ca^{2+} to the active site remains unaffected (Verheij et al., 1980). Furthermore, a majority of residues involved in the formation of a hydrophobic channel (Leu-2, Phe-5, and Ile-9) (Scott et al., 1990b) are also conserved in trimorphin with the exception of Trp-19, which has been substituted (somewhat conservatively) by Leu-19.

3.5. Evolutionary relationships

An analysis of sequence relatedness was conducted by comparing the N-terminal amino acid sequence of trimorphin with the first 50 residues of sequence of 86 snake venom PLA₂s. The resultant cladogram (Fig. 6) strongly indicates that trimorphin is a member of the group IA PLA₂ family. Structural analysis reveals that residues which are highly conserved in elapid group IA PLA2, are also conserved in trimorphin. Trimorphin appears to be more closely related to the PLA2s from sea snakes and Australian elapid snake venoms (subfamily Hydrophiinae) than to the other terrestrial elapids or to viperid venoms. Phylogenetic analysis of phospholipases has been used extensively to examine evolutionary relationship among PLA₂s from various animal species (Dufton and Hider, 1983; Tamiya and Yagi, 1985; Hawgood and Bon, 1991; Kostetsky et al., 1991; Slowinski et al., 1997; Tsai, 1997). Slowinski et al. (1997) have compared the amino acid sequences of PLA₂ from 25 species of elapids in 14 genera, and their results support a division of the elapids examined into sister groups of the Australian and marine species, and African and Asian

species, a conclusion also supported by DNA sequence data (Keogh, 1998). Based on cladistic analyses, trimorphin is nested within the elapid PLA2s, with a closer homology to the marine and Australian elapids. Recently, based on mitochondrial and nuclear DNA sequence data, elapids have been shown to be nested within the 'Colubridae' subfamilies (Vidal and Hedges, 2002) or as the sister taxon to the 'Colubridae' (including several newly defined families; Vidal and David, 2004), indicating that our data (based on protein sequence) may also reflect this close relationship to the Elapidae. However, at the current stage of analysis of trimorphin, this phylogenetic comparison is for the purpose of classifying the enzyme. A more detailed relationship between the trimorphin and other snake venom PLA2s will be obtained when the complete sequence becomes available, but we predict that the closer affinity with elapid group I enzymes (and species) than with viperid enzymes will be borne out.

Colubrid snake venoms represent a largely unexplored source of phospholipases and other enzymes and toxins (Hill and Mackessy, 2000; Mackessy, 2002), and PLA₂s will likely be isolated from venoms of numerous other colubrid species. Because many of these venoms lack the complexity of viperid and elapid venoms, the single step isolation method presented here will allow rapid isolation of colubrid PLA₂s. It is clear that colubrid PLA₂s are homologous with those found in other venoms, and as sequences become available, they undoubtedly will have great utility in helping to untangle the complex evolutionary history of this largest family of snakes.

Fig. 6. Cladogram of relationship between *T. biscutatus* PLA₂ (trimorphin-1) and other snake venom group IA PLA₂ enzymes based on the first 50 amino acid residues; identity of numbered PLA₂ is given in Appendix A. The last PLA₂ (87) is Mojave toxin basic subunit PLA₂ from the viperid snake *Crotalus scutulatus* and serves as a group IIa PLA₂ outgroup representative. Note that even though the sequences represented here are truncated at residue 50, the relationship of the hydrophine and elapine clades (as observed by Slowinski et al., 1997) is largely preserved. Trimorphin is nested within a group including primarily the hydrophine elapid PLA₂s (PLA2s 2-44).

Acknowledgements

This work was partially supported by grant GM52665-01 from the National Institutes of Health, National Institute of General Medical Sciences (to SPM) and by the UNC Sponsored Programs and Academic Research Center. Snakes were donated by B. Tomberlin and W. Sherbrooke, and their help is greatly appreciated.

Appendix A

Phospholipase A_2 toxins and snake species included in cladistic analysis of PLA₂ relationships (Fig. 6). Sequences are available in Danse et al. (1997) and via the National Center for Biotechnology Information's NR Protein Database (FASTA programs: Pearson and Lipman, 1988)

1Trimorphodon biscutatus Senhydrina schistosaTrimorphin2Enhydrina schistosaMyotoxin463Enhydrina schistosaMyotoxin homolog44Hydrophis lapemoidesPLA2475Notechis scutatus scutatusNotechis II-566Notechis scutatus scutatusNotexin Np487Notechis scutatus scutatusNotexin isoform Ns8Notechis scutatus scutatusScutoxin499Pseudonaja textilisTextilotoxin A subunit5010Laticauda semifasciataLs PLA I11Laticauda semifasciataLs PLA III12Laticauda semifasciataLs PLA IV13Notechis scutatus scutatusNotechis II-114Notechis scutatus scutatusNotechis II-115Australaps superbaPlatelet aggregation inhibitor16Aipysurus laevisPLA2-like17Pseudechis australisPa-15a18Pseudechis australisPa-15a10Recudakis curatusPa 15b	Ox scu Pse Ox scu Ox scu
1Trimorphodon biscutatusTrimorphin2Enhydrina schistosaMyotoxin463Enhydrina schistosaMyotoxin homolog4Hydrophis lapemoidesPLA2475Notechis scutatus scutatusNotechis II-56Notechis scutatus scutatusNotexin Np487Notechis scutatus scutatusNotexin isoform Ns8Notechis scutatus scutatusScutoxin499Pseudonaja textilisTextilotoxin A subunit5010Laticauda semifasciataLs PLA I11Laticauda semifasciataLs PLA IN12Laticauda semifasciataLs PLA IN13Notechis scutatus scutatusNotechis II-114Notechis scutatus scutatusNotechis II-115Australaps superbaPlatelet aggregation inhibitor5516Aipysurus laevisPLA2-like17Pseudechis australisPa-15a5618Pseudechis australisPa-15a57	scu Pse Ox <u></u> scu Ox
2Enhydrina schistosaMyotoxin463Enhydrina schistosaMyotoxin homolog4Hydrophis lapemoidesPLA2475Notechis scutatus scutatusNotechis II-56Notechis scutatus scutatusNotexin Np487Notechis scutatus scutatusNotexin isoform Ns8Notechis scutatus scutatusScutoxin499Pseudonaja textilisTextilotoxin A subunit5010Laticauda semifasciataLs PLA I11Laticauda semifasciataLs PLA IN12Laticauda semifasciataLs PLA IN13Notechis scutatus scutatusNotechis II-114Notechis scutatus scutatusNotechis II-115Australaps superbaPlatelet aggregation inhibitor5516Aipysurus laevisPLA2-like17Pseudechis australisPa-135618Pseudechis australisPa-15a57	Pse Ox scu Ox scu
3Enhydrina schistosaMyotoxin homolog4Hydrophis lapemoidesPLA2475Notechis scutatus scutatusNotechis II-56Notechis scutatus scutatusNotexin Np487Notechis scutatus scutatusNotexin isoform Ns8Notechis scutatus scutatusScutoxin499Pseudonaja textilisTextilotoxin A subunit5010Laticauda semifasciataLs PLA I11Laticauda semifasciataLs PLA IN12Laticauda semifasciataLs PLA IN13Notechis scutatus scutatusNotechis II-114Notechis scutatus scutatusNotechis II-115Australaps superbaPlatelet aggregation inhibitor5516Aipysurus laevisPLA2-like17Pseudechis australisPa-135618Pseudechis australisPa-15a57	Ox <u>s</u> scu Ox <u>s</u> scu
4Hydrophis lapemoidesPLA2475Notechis scutatus scutatusNotechis II-566Notechis scutatus scutatusNotexin Np487Notechis scutatus scutatusNotexin isoform Ns88Notechis scutatus scutatusScutoxin499Pseudonaja textilisTextilotoxin A subunit5010Laticauda semifasciataLs PLA I11Laticauda semifasciataLs PLA III12Laticauda semifasciataLs PLA IV13Notechis scutatus scutatusNotechis II-114Notechis scutatus scutatusNotechis II-115Australaps superbaPlatelet aggregation inhibitor5516Aipysurus laevisPLA2-like17Pseudechis australisPa-15a5618Pseudechis australisPa-15a57	Ox scu Ox scu
5Notechis scutatus scutatusNotechis II-56Notechis scutatus scutatusNotexin Np487Notechis scutatus scutatusNotexin isoform Ns8Notechis scutatus scutatusScutoxin499Pseudonaja textilisTextilotoxin A subunit5010Laticauda semifasciataLs PLA I11Laticauda semifasciataLs PLA IN12Laticauda semifasciataLs PLA IN13Notechis scutatus scutatusPLA2 11'214Notechis scutatus scutatusNotechis II-115Australaps superbaPlatelet aggregation inhibitor16Aipysurus laevisPLA2-like17Pseudechis australisPa-1318Pseudechis australisPa-15a10Resudachis matagiaPa 15h	scu Ox <u></u> scu
6Notechis scutatus scutatusNotexin Np487Notechis scutatus scutatusNotexin isoform Ns8Notechis scutatus scutatusScutoxin499Pseudonaja textilisTextilotoxin A subunit5010Laticauda semifasciataLs PLA I11Laticauda semifasciataLs PLA IN12Laticauda semifasciataLs PLA IV13Notechis scutatus scutatusPLA2 11'214Notechis scutatus scutatusNotechis II-115Australaps superbaPlatelet aggregation inhibitor16Aipysurus laevisPLA2-like17Pseudechis australisPa-1318Pseudechis australisPa-15a10Resudachis australisPa-15a	Ox_ scu
7Notechis scutatus scutatusNotexin isoform Ns8Notechis scutatus scutatusScutoxin499Pseudonaja textilisTextilotoxin A subunit5010Laticauda semifasciataLs PLA I11Laticauda semifasciataLs PLA III12Laticauda semifasciataLs PLA IV13Notechis scutatus scutatusPLA2 11'214Notechis scutatus scutatusNotechis II-115Australaps superbaPlatelet aggregation inhibitor16Aipysurus laevisPLA2-like17Pseudechis australisPa-1318Pseudechis australisPa-15a10Resudechis australisPa 15a	scu
8 Notechis scutatus scutatus Scutoxin 49 9 Pseudonaja textilis Textilotoxin A subunit 50 10 Laticauda semifasciata Ls PLA I 51 11 Laticauda semifasciata Ls PLA III 51 12 Laticauda semifasciata Ls PLA IV 52 13 Notechis scutatus scutatus PLA2 11'2 53 14 Notechis scutatus scutatus Notechis II-1 54 15 Australaps superba Platelet aggregation inhibitor 55 16 Aipysurus laevis PLA2-like 17 Pseudechis australis Pa-13 56 18 Pseudechis australis Pa-15a 57	~
9Pseudonaja textilisTextilotoxin A subunit5010Laticauda semifasciataLs PLA I11Laticauda semifasciataLs PLA III12Laticauda semifasciataLs PLA IV13Notechis scutatus scutatusPLA2 11'214Notechis scutatus scutatusNotechis II-115Australaps superbaPlatelet aggregation inhibitor16Aipysurus laevisPLA2-like17Pseudechis australisPa-1318Pseudechis australisPa-15a10Resudechis australisPa 15a	Ox
subunit5010Laticauda semifasciataLs PLA I11Laticauda semifasciataLs PLA III12Laticauda semifasciataLs PLA IV13Notechis scutatusPLA2 11'214Notechis scutatus scutatusNotechis II-115Australaps superbaPlatelet aggregation16Aipysurus laevisPLA2-like17Pseudechis australisPa-1318Pseudechis australisPa-15a10Resudechis australisPa-15a	scu
10Laticauda semifasciataLs PLA I11Laticauda semifasciataLs PLA III5112Laticauda semifasciataLs PLA IV5213Notechis scutatus scutatusPLA2 11'25314Notechis scutatus scutatusNotechis II-15415Australaps superbaPlatelet aggregation inhibitor5516Aipysurus laevisPLA2-like17Pseudechis australisPa-135618Pseudechis australisPa-15a57	Ox
11Laticauda semifasciataLs PLA III5112Laticauda semifasciataLs PLA IV5213Notechis scutatus scutatusPLA2 11'25314Notechis scutatus scutatusNotechis II-15415Australaps superbaPlatelet aggregation inhibitor5516Aipysurus laevisPLA2-like17Pseudechis australisPa-135618Pseudechis australisPa-15a57	scu
12Laticauda semifasciataLs PLA IV5213Notechis scutatus scutatusPLA2 11'25314Notechis scutatus scutatusNotechis II-15415Australaps superbaPlatelet aggregation inhibitor5516Aipysurus laevisPLA2-like17Pseudechis australisPa-135618Pseudechis australisPa-15a57	Not
13Notechis scutatus scutatusPLA2 11'25314Notechis scutatus scutatusNotechis II-15415Australaps superbaPlatelet aggregation inhibitor5516Aipysurus laevisPLA2-like17Pseudechis australisPa-135618Pseudechis australisPa-15a57	Pse
14Notechis scutatus scutatusNotechis II-15415Australaps superbaPlatelet aggregation inhibitor5516Aipysurus laevisPLA2-like17Pseudechis australisPa-135618Pseudechis australisPa-15a57	Bui
15Australaps superbaPlatelet aggregation inhibitor5516Aipysurus laevisPLA2-like17Pseudechis australisPa-135618Pseudechis australisPa-15a10Besudechis australisPa-15a	Bui
inhibitor 55 16 Aipysurus laevis PLA ₂ -like 17 Pseudechis australis Pa-13 56 18 Pseudechis australis Pa-15a 10 Resudechis australis Pa-15b 57	
16Aipysurus laevisPLA2-like17Pseudechis australisPa-135618Pseudechis australisPa-15a10Besudechis australisPa-15b57	Bui
17Pseudechis australisPa-135618Pseudechis australisPa-15a10Pseudechis australisPa 15b	
18 Pseudechis australis Pa-15a	Bui
10 Danudashia gustuslis Do 15h 57	
19 Pseudechis dustratis Pa-150 57	Bui
20 Laticauda colubrina Lc-PLA-II	
21Laticauda laticaudaPLA2-like58	Bui
22 Laticauda colubrina Lc-PLA-I 59	Bui
23 Pseudechis australis Pa-1Ga	
24 <i>Pseudechis australis</i> Pa-1Gb 60	Ma
25 <i>Pseudechis australis</i> Pa-3a 61	Ma
26Pseudechis australisPa-3b62	Mie
27 <i>Pseudechis papuanus</i> PPV PLA ₂ , neutral 63	Mie
28 Pseudechis australis Pa-10a 64	Mie
29 Pseudechis australis Pa-11 65	Asp
30 <i>Pseudechis australis</i> Pa-12a 66	Mie
31 <i>Pseudechis australis</i> Pa-12c 67	Naj
32 <i>Pseudechis australis</i> Pa-5a 68	Naj
33 Pseudechis australis Pa-5b	

Number	Snake species	Toxin name
34	Pseudechis porphyriacus	Pseudexin A
35	Bungarus fasciatus	Toxin Va
26		cardiotoxin
36	Bungarus fasciatus	Toxin Vb-2
27		cardiotoxin
37	Bungarus fasciatus	Toxin V-I
20		
38 20	Bungarus fasciatus	Toxin X-I dasic
39 40	Bungarus fasciatus	Toxin III neutrol
40	Bungarus Jasciatus	Nononzumatia
41	Bungarus fasciatus	Nonenzymatic
40	Dagu day aig tautilia	Tautilatavin C
42	P seudonaja textitis	
12	Dagu daghia namhuri agus	Subuill Decuderin D
43	Pseudechis porphyriacus	Pseudexin B Decudexin C
44	Pseudecnis porphyriacus	Pseudexin C
45	oxyuranus scutellatus scutellatus	
46	Pseudonaja textilis	Textilotoxin B
	-	subunit
47	Oxyuranus scutellatus scutellatus	Taipoxin β1 chain
48	Oxvuranus scutellatus	Taicatoxin PLA ₂
10	scutellatus	1.6.4.2
49	Oxvuranus scutellatus	Taicatoxin PLA ₂
.,	scutellatus	1.6.4.3
50	Oxvuranus scutellatus	OS ₂
	scutellatus	2
51	Notechis scutatus scutatus	PLA ₂ 24'2
52	Pseudechis australis	Pa-9c
53	Bungarus multicinctus	Phospholipase A
54	Bungarus multicinctus	β -bungarotoxin, A1
55	Bungarus multicinctus	$\beta_{\rm abungarotoxin} \Delta 2$
55	Dungarus mainemenus	chain
56	Bungarus multicinctus	β-bungarotoxin, A2
		chain variant
57	Bungarus multicinctus	β-bungarotoxin, A3
		chain
58	Bungarus multicinctus	P11 PLA ₂ isoform
59	Bungarus multicinctus	B. multicinctus A4 chain
60	Maticora bivirgata	PLA ₂ I
61	Maticora bivirgata	PLA_2 II
62	Micrurus nigrocinctus	PLA 2.5
63	Micrurus nigrocinctus	PLA 3.6
64	Micrurus nigrocinctus	PLA 1.3
65	Aspidelaps scutatus	CM-II
66	Micrurus corallinus	PLA ₂ -V2
67	Naja naja atra	Acidic PLA
68	Naja naja atra	Acidic PLA.

isoform

Number	Snake species	Toxin name
69	Naja naja kaouthia	CM-II
70	Naja naja sputatrix	PLA ₂ clone 1
71	Naja naja kaouthia	CM-III
72	Naja naja sputatrix	PLA ₂ clone 2
73	Naja naja sputatrix	PLA ₂ clone 3
74	Naja melanoleuca	DE-II
75	Naja mossambica	CM-I
76	mossambica Naja mossambica mossambica	CM-II
77	Naja mossambica mossambica	CM-III
78	Naja mossambica pallida	Ш
79	Naja nigricollis	Basic PLA
80	Naja nigricollis	Nigexin, cvtotoxin
81	Naja melanoleuca	DE-I
82	Naja melanoleuca	DE-III
83	Hemachatus hemachatus	DE-I
84	Naia naia naia	Acidic
85	Naja naja naja	Acidic PLA2
86	Naja naja oxiana	Phospholipase A E3
87	Crotalus scutulatus scutulatus	Mojave toxin-b, basic subunit

References

- Bradford, M.M., 1976. A rapid and sensitive method for the quantitatiion of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
- Chang, C.C., 1985. Neurotoxins with PLA₂ activity in snake venoms. Proc. Natl. Sci. Counc., ROC B9, 126–142.
- Danse, J.M., Gasparani, S., Menez, A., 1997. Molecular biology of snake venom phospholipases A₂. In: Kini, R.M., (Ed.), Venom Phospholipase A₂ Enzymes. Structure, Function and Mechanism A₂, Wiley, New York, pp. 29–72.
- van Deenen, L.L.M., de Haas, G.H., 1963. The substrate specificity of phospholipase A₂. Biochem. Biophys. Acta 70, 538–553.
- Dufton, M.J., Hider, R.C., 1983. Classification of phospholipases A₂ according to sequence: evolutionary and pharmacological implications. Eur. J. Biochem. 137, 545–551.
- Fleer, E.A., Verheij, H.M., de Haas, G.H., 1978. The primary structure of bovine pancreatic phospholipase A₂. Eur. J. Biochem. 82, 261–269.
- Fujimi, T.J., Kariya, Y., Tsuchiya, T., Tamiya, T., 2002. Nucleotide sequence of phospholipase A₂ gene expressed in snake pancreas reveals the molecular evolution of toxic phospholipase A₂ genes. Gene 292, 225–231.
- Halpert, J., Eaker, D., 1976. Isolation and amino acid sequence of a neurotoxic phospholipase A from the venom of the Australian tiger snake *Notechis scutatus scutatus*. J. Biol. Chem. 251, 7343–7347.

- Hawgood, B.J., Bon, C., 1991. Snake venom presynaptic toxins. In: Tu, A.T., (Ed.), Snake Venom Presynaptic Toxins, vol. 5. Marcel Dekker, New York, pp. 3–20.
- Hill, R.E., Mackessy, S.P., 1997. Venom yields from several species of colubrid snakes and differential effects of ketamine. Toxicon 35, 671–678.
- Hill, R.E., Mackessy, S.P., 2000. Characterization of venom (Duvernoy's secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins. Toxicon 38, 1663–1687.
- Holzer, M., Mackessy, S.P., 1996. An aqueous endpoint assay of snake venom phospholipase A₂. Toxicon 34, 1149–1155.
- Joubert, F.J., van der Walt, S.J., 1975. Naja melanoleuca (forest cobra) venom. Purification and some properties of phospholipases A. Biochim. Biophys. Acta 379, 317–328.
- Keogh, J.S., 1998. A molecular phylogeny of elapid snakes and a consideration of their biogeographic history. Biol. J. Linn. Soc. 63, 177–203.
- Kini, R.M., 1997. Phospholipase A₂: a complex multifunctional protein puzzle. In: Kini, R.M., (Ed.), Venom Phospholipase A₂ Enzymes: Structure, Function and Mechanism, Wiley, New York, pp. 1–28.
- Kostetsky, P.V., Arkhipova, S.F., Vladimirova, R.R., 1991. Conservative and variable regions of homologous snake phospholipases A₂ sequences: prediction of the taxon-specific peptides structure. J. Protein Chem. 10, 593–601.
- Lee, C.Y., 1979. Recent advances in chemistry and pharmacology of snake toxins. Adv. Cytopharmacol. 3, 1–16.
- Li, Y., Yu, B.-Z., Zhu, H., Jain, M.K., Tai, M.-D., 1994. Phospholipase A₂ engineering. Structural and functional roles of the highly conserved active site residue aspartate-49. Biochemistry 33, 14714–14722.
- Mackessy, S.P., 1988. Venom ontogeny in the Pacific rattlesnakes Crotalus viridis helleri and C. v. oreganus. Copeia 1988:92–101.
- Mackessy, S.P., 2002. Biochemistry and pharmacology of colubrid snake venoms. J. Toxicol. Toxin Rev. 2(1/2), 43–83.
- Mackessy, S.P., Williams, K., Ashton, K., 2003. Characterization of the venom of the midget faded rattlesnake (*Crotalus viridis concolor*): a case of venom paedomorphosis? Copeia 2003: 769–782.
- Mukherjee, A.B., 1990. Biochemistry, Molecular Biology and Physiology of Phospholipase A₂ and its Regulatory Factors, Plenum Press, New York.
- Pearson, W.R., Lipman, D.J., 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444–2448.
- Pearson, J.A., Tyler, M.I., Retson, K.V., Howden, M.E., 1993. Studies on the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of the Australian common brown snake (*Pseudonaja textilis*). 3. The complete amino-acid sequences of all the subunits. Biochim. Biophys. Acta 1161, 223–229.
- Rosenberg, P., 1990. Phospholipases. In: Shier, N.T., Mebs, D. (Eds.), Handbook of Toxinology, Marcel Dekker, New York, pp. 67–73.
- Scott, D.L., Otwinowski, Z., Gelb, M.H., Sigler, P.B., 1990a. Crystal structure of bee-venom phospholipase A₂ in a complex with a transition-state analogue. Science 250, 1560–1566.

- Scott, D.L., White, S.P., Otwinowski, Z., Yuan, W., Gelb, M.H., Sigler, P.B., 1990b. Interfacial catalysis: the mechanism of phospholipase A₂. Science 250, 1541–1546.
- Serrano, S.M., Reichl, A.P., Mentele, R., Auerswald, E.A., Santoro, M.L., Sampaio, C.A., Camargo, A.C., Assakura, M.T., 1999. A novel phospholipase A2, BJ-PLA2, from the venom of the snake *Bothrops jararaca*: purification, primary structure analysis, and its characterization as a plateletaggregation-inhibiting factor. Arch. Biochem. Biophys. 367, 26–32.
- Slowinski, J.B., Knight, A., Rooney, A.P., 1997. Inferring species trees from gene trees: a phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of venom proteins. Mol. Phylogenet. Evol. 8, 349–362.
- Tamiya, N., Yagi, T., 1985. Non-divergence theory of evolution: sequence comparison of some proteins from snakes and bacteria. J. Biochem. 98(2), 289–303.
- Tsai, I.H., 1997. Phospholipases A₂ of Asian snake venoms. J. Toxicol. Toxin Rev. 16, 79–113.
- Tu, A.T., Passey, R.B., Toom, P.M., 1970. Isolation and characterization of phospholipase A from sea snake *Laticauda semifasciata* venom. Arch. Biochem. Biophys. 140, 96–106.

- Verheji, H.M., Volwerk, J.J., Jasen, E.H.J.M., Puyk, W.C., Dijkstra, B.W., Drenth, J., Haas, G.H., 1980. Methylation of histidine-48 in pancreatic phospholipase A₂. Role of histidine and calcium ion in the catalytic mechanism. Biochemistry 19, 743–750.
- Vidal, N., David, P., 2004. New insights into the early history of snakes inferred from two nuclear genes. Mol. Phylogenet. Evol. 31, 783–787.
- Vidal, N., Hedges, S.B., 2002. Higher-level relationships of caenophidian snakes inferred from four nuclear and mitochondrial genes. C. R. Biol. 325, 987–995.
- Vidal, J.C., Cattaneo, P., Stoppani, A.O., 1972. Some characteristic properties of phospholipases A₂ from *Bothrops neuwiedii* venom. Arch. Biochem. Biophys. 151, 168–179.
- Yang, C.C., 1994. Structure-function relationship of phospholipase A₂ from snake venoms. J. Toxicol. Toxin Rev. 13, 125–177.
- Yang, C.C., King, K., 1980. Chemical modification of the histidine residue in basic phospholipase A₂ from the venom of *Naja nigricollis*. Biochim. Biophys Acta 614, 373–388.
- Zhang, C., Gopalakrishnakone, P., 1999. Histopathological studies of the acute inflammation in synovial tissue of rat knee joint following intra-articular injection of PLA2 from Chinese Cobra (*Naja naja atra*) venom. Toxicon 37, 783–799.