Multiple Blood Typing

According to Craig Medical online (www.craigmedical.com), the overall statistical distribution of blood type plus Rh factor in the general population is as follows:

<table>
<thead>
<tr>
<th>Blood Type</th>
<th>Rh factor</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>O</td>
<td>38%</td>
<td>7%</td>
</tr>
<tr>
<td>A</td>
<td>34%</td>
<td>6%</td>
</tr>
<tr>
<td>B</td>
<td>9%</td>
<td>2%</td>
</tr>
<tr>
<td>AB</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Total</td>
<td>84%</td>
<td>16%</td>
</tr>
</tbody>
</table>

1. Determine the probability that a randomly selected person from the general population will have type B blood, given that you already know the person has Rh negative blood.

Conditional Probability

The **conditional probability** of an event F in relationship to event E is the probability that event F occurs after event E has already occurred. The notation is $P(F|E)$ and is read, “the probability of event F given event $E.”

According to the book, the following formula is used to determine conditional probabilities.

Conditional Probability Rule

If E and F are two events, then

$$P(F \mid E) = \frac{P(E \text{ and } F)}{P(E)}$$

The probability of event F occurs, given the occurrence of event E, is found by dividing the probability that both events occurred by the probability that the first event has occurred.

2. Explain how the formula applies in your answer to item 1.